Chapter 2

2.1-1 Let us denote the signal in question by g(t) and its energy by E,. For parts (a) and (b)

i 1 2 1 2x
Eg=/ sin’“lt:;/ dt-—/ cos2tdt=n+0=m
° <Jo 2 Jo

4w 1 4 4
(c) E,,:-./ sin’!df=§/ dt — = cosAdt=n+0=7
2 2n

Lg 2

2 1 2 1 2%
(d) E, = / (2sin )2 dt =4 [-,;/ dt ~ ;,-/ cos 2t dt] =4[r + 0] =4r
0 0 0

Sign change and time shift do not affect the signal energy. Doubling the signal quadruples its energy. In the
same way we can show that the energy of kg(t) is k*E,.

21-2 (a) Ee= 0% =2 E,=[J(1dt+ [ (-1)%de =2

1 2
Exvy =/ (2)%dt = 4. E,-, / (2%dr =4
0 1

Therefore Ex4, = E; - E,.

e}

.. r n/2 - In,2 2n
MVE, = / (1)2dr+/ (~1)2dt = 2x. E, =/ (1)’m+/ (—1)’.1:4_-/ (1)’d:+/ t-1)%¢t = 2x
JO Ld 0 Jmf2 - JAr 2

”/2 Iw/2 2%
Ez,,=/ (2)7dr+/ (0)’dr+/ (-1)%dt = 4r
o] " 3

/2 " /2

Similaily. we can show that E;_, = 47 Therefore Exz, = E. + E,. We are tempted 10 conclude that L., =
E. ~ £, in general. Let us see.

rr/d ” L4
(c) 1-:,=j (1)2dt+/ (~1)dt == 5,:/ (Wt ==
0 ” [+]

/4

n/4 ar ~/4 »
E.ty =/ (2)°dt +/ 0dt=x  E., =/ (0)%at +/ (~2)%dt = 3r
0 n/4 [+] /4

Therefore. in general Ez3, # Ex + E,
2.1-3

To 2 To
1 2 2 C
= ‘¢ cos t+88)dt = =— os (2wot + 20)] dt
P, To‘/o C'* cos®(wot + 8) dt 27_()/; {1 + cos (2wot + 26)]

C'I Tn To C2 C?
= — - s (4 4 G)dt}] = == =
T [/o dt+ [) cos (2wot + 26) d i) To + 0} 3

2.1-4 This problem is identical to Example 2.2b. except that w; # wa. In this case. the third integral in % (see p. 19
is not zero. This integral is given by

2c,a T2
Iy = lim Gl ¢0s (w1t + 01} cos (wit + 82) dt
T— T -T2

C C T/2 T/2
= lim —1=2 [/ cos{6) — ) dt +/ cos(2wyt + 0y + 82) dt
T -T/2 -172
. C1Cy
= lim

A T {77 cos(f, — A7)} + 0 = C1C3 cos(by — 62)
—




Therefore

tad &1
L4 ]

C

C
Py= 2+ 5 C1C2cos(f) - 82)
2.1-5 2
] 3,2 1 2 N2, g
Po== [ ("2dt=64/7 (&) Pog= = [ (-t} %dt =64/7
4/, 4/,
1 [? 1 [?
(b) Ppy = ¢ / (21%)%dt = 4(64/7) = 256/7  (c) Peg = 2 / (ct®)?dt = 64c2/7
-2 -2
Sign change of a signal does not affect its power. Multiplication of a signal by a constant « increases the power
by a factor 2.
2.1-6
1 [7 —¢/2\2 1 1 e
(a) Py = - (e Ydt =— e tdt =~} —e7 7}
T Jo T Jo T
1 ” 2 1 n/2
(b) P,=— / wi(t)dt = — dt = 0.5
r J_ . 2r /2
Ta/2 To/2
© P=a [ wdwa=2 [T a=t
To J_1o/2 To J 12
1 : 2
(d) Py=- / (£1)*dt =1
1/,
2r 2
1 t\° 1
(e) Py = -27 A (-2—1.:) dt = 3
2.1-7

. 1 T2 / ., . 1 mZ - »  j{wg—welt
Po=fim 7 [ angtindi=im g [ 33 DT

772 T/2 k=m r=m

! The integrals of the cross-product terms (when k # r) are finite because the integrands are periodic signals
{made up of sinusoids). These terms. when divided by T — co. yield zero. The remaining terms (k = r) yield

T/I2 n n
T 2 2
P gm [, P = 3o

“T/2 pmm =m

2.1-8 (a) Power of a sinusoid of amplitude C is C?/2 [Eq. (2.6a)] regardless of its frequency {w # 0) and phase.
Therefore. in this case P = (10)%/2 = 50.
(b) Power of a sum of sinusoids is equal to the sum of the powers of the sinusoids [Eq. (2.6b)]. Therefore. in

this case P = G302 4 08% — 178,

(c) (10 + 2 sin 3t) cos 10t = 10cos 10t + sin 13t — sin 3t. Hence from Eq. (2.6b) P = Qgﬁ +3+3=50

(d) 10cos 5t cos 10t = 5(cos 5t + cos 15¢. Hence from Eq. (2.6b) P = S + £ = 25,

(e) 10sin 5t cos 10t = 5(sin 15/ — sin 5¢. Hence from Eq. (2.6b) P = %ﬁ + -‘;“;“—2 = 25.

(F) r*®' coswot = § [e!(@+=0)t 4 pila=v0)t] Using the result in Prob. 2.1-7. we obtain P = (1/4) + (1/4) = 1/2.

2.2-1 For areala
L2 8 e %
, E,= / (e %2 dt = ] et = 00
it -~ -

i L [T y [T
i Py = lim = (c7%dt = lim = et = oo
T—=T J_12 T—x -T2

For imaginary 2. let a = jr. Then )

, [T ' y [T
P, = Ili'm-r,..\,—/ (W™ dt = lim = / dt =

T J.1)2 T D f 12
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Fig. §2.3-2

Clearly. if o is real. r~°* is neither energy not power signal. However. if a is imaginary, it is a power signal with
power 1.

2.3-1
@) =gt-1)+q(t-1). g()=g(t-1)+g(t+1), gt)=gq(t—-03)+aqlt+0.5)

The signal gs{t) can be obtained by (i) delaying g{7) by 1 second {replace t with t — 1}, (ii) then time-expanding
by a factor 2 (replace t with 1-2). (iii) then multiply with 1.5. Thus ¢s(t) = 1.59(% -1).

2.3-2 All rthe signals are shown in Fig. $2.3-2.

2.3-3 Al the signuls are shown in Fig. §2.3-3
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Fig. 82.3-3

;:_y=/ [-g(:)]’dr=/ g*(t)dt = E,. E,(_,,=/ (g(—t))zdt=/ *lz)dr = Eg
Y - - - -

n i R 9 L %) l e 8
Egue-y = / ot = TP dt = / ¢*(x)dr = E;.  Egan = / lo(an)?dt = = / 9*(z)dr = Eg/o

N

ta ) ] ~ " ~
Eg(ar»-o),=/ [gtat = 1)} dt = - / g (r)die = Egjo.  Ey/a) =/ la(1/a)? dt = a/ g*(7)dt = aEq

Eapy = / ing(t))* dt = a’/ ¢ () dt = a°E,
2.4-1 Using the fact that g(r)#(r) = g(0)4(7). we ha‘vc
(a) 0 (b) 34(w) (c) $a(1) (d) -38(t-1) (e) adlw+3)  (f) ké(w) (use L' Hopital's rule)

2.4-2 In these problems remember that impulse #(x) is located at z = 0. Thus. an impulse {t — ) is located at 7 = 1.
and so on.

(a) The impulse is located at ~ =1 and g{7) at 7 =t is g(t). Therefore

3



2.4-3

2.
2.

2.

(&

5-1
5-2

5-3

.5-4

/ a(7)8(t — 1)dr = g(t)

LY

(b) The impulse A(7) is at 7 = 0 and g(t — 7) at 7 = 0 is g(t). Therefore

/m (r)g(t - 7)dr = g(t)

~

Using similar arguments. we obtain

()1 (A0 () (£)5 (g)g(-1) (h) —e?
Letting nt = r. we obtain (for a > Q)

/_ ol(t)8(at) dt = % / ¢(£~)6(1)d1= £.¢(0)

~ -

Similarly for a < 0. we show that this integral is —1¢(0). Therefore

Therefore

&(at) = T}z-l/,(r)

Trivial. Take the derivative of le!? with respect to r and equate it to zero.

(a) In this case E; = fol dt = 1. and

L[ 1 [
l':E./l; 9('}-”(')'“'-‘;1 tdt =05

(b) Thus. gf{t) =~ 0.57(t). and the error c(t) = t ~ 0.5 over (0 < t < 1). and zero outside this intervai. Also E,
and E. (the energy of the ervor) are

1 1 1
E,=/ g’(r)dt=/ t?dt =1/3 and £,=/ (t - 0.5)%dt = 1/12
0 o] 0

The error (t — 0.5) is orthogonal to r(t) because

3
/ (t —0.5)(1)dt = 0
4]

Note that E, = ¢?E; + E.. To explain these results in terms of vector concepts we observe from Fig. 2.15
that the error vector e is orthogonal to the component ¢x. Because of this orthogonality. the length-square of
g ienergy of g(1)] is equal to the sum of the square of the lengths of £x and e [suin of the energies of rr(t) and

e(1)].
In this case E, = fol g3(Ndt = fol t2dt = 1/3. and

1 H
c_—__]-/ ;r(t)g(t)df.—.{i/ tdt =15
Ey Jo 0

Thus. 7(f) = 1.5g(t). and the error r{t) = x(1) — 1.5¢(¢) = 1 - 1.5¢ over (0 < t < 1). and zero outside this
interval. Also E,. (the energy of the error) is E, = fol(l -~ 1.51)%dt = 1/4.

(a) In this case Ex = [ sin?2ntdt = 0.5, and

1 ! 1 !
= (1) dt = —— t si tdt = —
¢ Ez‘/; g(x(t)d 0.5/0‘ sin 27 1/n

(b) Thus. g(t) = —(1/%)x(t). and the error e(t) = t + (1/7)sin 21t over (0 < t < 1). and zero outside this
interval. Also E, and E,. (the cnergy of the error) are

4
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1 1 1
1
Eg= / g3 (t)dt = / t?dt =1/3 and E, =/ [t = (1/7)sin 2wt dt = % - 33
0 JO 0 T

The error {t + (1/x)sin 2nt} is orthogonal to x(t) because
3
/ sin 27t{t + (1/7)sin 27t]dt = 0
0

Note that Eg = ¢*Ex + Ee. To explain these results in terms of vector concepts we observe from Fig. 2.15 that
the error vector e is orthogonal to the component ¢x. Because of this orthogonality, the length of f [energy of
g{t)] is equal to the sum of the square of the lengths of «x and e [sum of the energies of cx(t) and ¢(t)].

2.5-5 (a) If 7(t) and y(t) are orthogonal. then we can show the energy of z(t) £ y(t) is Ex + Ey.

/m f2(t) £ y(1)2 dt /"~ |r(t)|2dt+/m |y(t)|’dt:l:/~ z(t)y‘(t)dt:t/ z"(t)y(t) dt (1)

/W e (O dt + /m l(1)? dt (2)

The last result follows from the fact that because of orthogonality, the two integrals of the cross products
x(y"(t) and x°(1)y(1) are zero |see Eq. (2.40)]. Thus the energy of =(t) + y(t) is equal to that of z(#) — y(t) if
7(t) and y(1) are orthogonal.

(b) Using similar argument. we can show that the energy of ¢;7(t) + e2y(t) is equal to that of e1x(t) — cay(t) if
(1) and y!t) are orthogonal. This energy is given by |1 |2E, + I(-zley.

(c) If z(t) = 2(t) = »(t). then it follows from Eq. (1) in the above derivation that

E.=Ez+ Ey £ (Ezy + Eyz)

2.5-6 g1(2.-1). g2(-1.2). ga(0.-2). ga(1.2). gs(2.1), and ge(3.0). From Fig. 52.5-6. we sec that pairs (g3.g6).
(€:.84) and {g2.gs) are orthogonal. We can verify this also analytically.

Q

b ]
G:. : c,“
C's
G X, -»

G
*3 Gl

gig. $2.5-6

gige=(0x3)+(-2x0)=0
€ g=(2x1)+(-1x2)=0
gggs=(—lx2)+(?xl)=0

We can show that the corvesponding signa! pairs are also orthogonal.

/ " aaNas() i = / " [erahiBramldr =0

" -

/ " et = / T2 (r) - ra(t)lm (1) + 222(0))dt = 0

.

/q‘ g2(1)gs(t) dt = /‘x [=z3(t) + 272()}2r1 (1) + 72(1)]dt = 0

~ ~

[y ]



In deriving these results, we used the fact that f?’m 22dt = f_’; 3(t)dt = 1 and f_‘; T {t)za{t)dt = 0

2.6-1

We shall compute -, using Eq. (2.48) for each of the 4 cases. Let us first compute the energies of all the signals.

1
,=/ sin2ntdt = 0.5
0

In the same way we find Eg) = Ey, = Egy = Eg, = 0.5.
Using Eq. (2.4R), the correlation coefficients for four cases are found as

1 1
1 Y . _ . et - -
(1) m ./o‘ sin 27tsin 4xntdt =0 (2) m_/o (sin 274)( - sin 2nt) dt 1

! 0.8
3) 750-51-)-(0—”./; 0.707sin 27tdt =0  (4) m[/o 0.707 sin mdt—/a

Signals x(1) and g2(t) provide the maximum pProtection against noise.

2.8-1 Here T; = 2. so that wo =27/2 = m, and

1

5

~
g(t)=a,o+Za,.cosmrt+b,,sinmrt ~-1<t<1
n=1
where
1 [ 1 2 [? (-1 2
no=§/:lizdt=5. nn=§/lizcosnmdl= por e ol b,.=§ ;
Therefore

cosnmt -1<t<1

NS

=
1 s (~1)"
'q”)—3+1r Zl n?

0.707sin 21rtdt] = 1.414/7

’sinnwtdt = 1]

Figure S2.8-1 shows q(1; = 12 for all f and the corresponding Fourier series representing g(t) over (-1 1).

9gct)

The power of g(t) is

Moreover. from Parseval's theorem [Eq. (2.90)]

DO e

e 2 a [ n\ 2 ™
_ 2 C2 /132 4-1"\* 1 8 1
P=C+3F=(3) *52(‘;:572" “Ftm
1

ne}

(b) If the N-term Fourier series is denoted by (/). then

IA

cos nt -1<t

8l
i
)=



2.8-2

For N = 1. P = 0.1111; for N = 2. P; =
Thus. N = 3.
Here T =

27, so that wo = 27 /27 = 1. and

9(t) = ao + Za,, cosnt + b, sinnt

n=1

0.19323. For N = 3. P, = 0.19837, which is greater than 0.198.

L3 " 2 n+j
ao=-—1-/ tdt = Q, a..=52;/ tecosntdt =0, bn———/ tsinntdt = = )
- -

2r

”

Therefore

g(1) = 2(—1)"*1Z%sinnt

n=l

-r<t<w

Figure 52.8.2 shows g(t) =t for all t and the corresponding Fourier series to represent g(t) over (—=, ).

g )
Tt .

ek

- < t» -4n
T t —-»
Fig. 52.8-2
The power of gtt] is
=L [T, o
Pg--—l;;‘/:”(t) di = ~
Moreover. ftom Parseval's theorem |Eq. (2.90)]
~ -, - -~ 2
v _ 1 4 1 %
L - =7 _——
AT DI EE) BT
1 1 1
(b} If the N-term Fourier series is denoted by r{t). then
N 1
_ —_1\n+1 = &} . -
x{t) = 2(~1) Znsnn'rt T<t<
nel
The power P, is required to be 0.99 x -"12- = 0.372. Therefore
¢~ 4
=12 -
For N=1. P, =2 for N = 2. P, =25. for N = 5, P. = 2.927, which is less than 0.372. For N = 6. P =
2.9825. which is greater rhan 0.372. Thus. N = 6.
2.8-3 Recall that
1 [To?
ag = —/ g(t)dt (1a)
To ~Tol2

; To /2
p = —/ _q(f)cos nwot dt
To

~-To/2

To/2
by, = —-/ g(1) sin nwot dt

To/2

-
[

(1b)

(1c)



Recall also that cos nwot is an even function and sin nwot is an odd function of t. If g(t) is an even function of
t. then g(?) cos nwot is also an even function and g(t)sin nwot is an odd function of t. Therefore (see hint)

2 To/2
= = t) dt 2
no To/o g(t)d (2a)
4 To/2
An = = / q(t) cos nwotdt (2b)
To /o
bn =0 (2¢)

Similarly. if g(t) is an odd function of t, then g(t) cos nwot is an odd function of t and g(t)sin nwot is an even
function of . Therefore

(3a)

a =0, =0

4 To/2
bn = —/ g(t) sin nwot dt {3b)
To J,

Observe that. because of symmetry, the integration required to compute the coefficients need be performed over
only half the period.
2.8-4 (a) To=4.w = % = Z. Because of even symmetry, all sine terms are zero.

g(t) =nao + Za,. cos (%I)

n=1

ag = 0 (by inspection)
4 ! nw 2 nw 4 nr
p = = cos (—1—!) dt - cos(-——r) dt] = —— sin =
41/, 2 N 2 nrw 2

Thevefore. the Fourier series for g(t) is

(f'—i(cos”—'—lco E5--1!-{»--1-csi’r—t-—-l-cosz—’f-g'--~)
=g\ g gy tgeosy — 77~

Here b, = 0. and we allow C, to take negative values. Figure S2.8-4a shows the plot of C.
(b) To = 107. o = # = {. Because of even symmetry. all the sine terms are zero.

q(t)y = ap + Zn., cos (%1) + by Sin (gf)

n=}\

g = % (by inspection)

—z- sco (21) it = ! (5) i (-’-l-t)’ —-—2—sin(n—7r-)
107 _”55 = \n)¥\E -n %N 5

w
bn = Tg—n / sin (%t) dt =0 (integrand is an odd function of t)

-

n

Hete b, = 0. and we allow Cn, to take negative values. Note that C, = a, forn =0, 1. 2, 3, - - -. Figure 52.8-4b
shows the plot of Ch.
(¢) To=27. wo = 1.

~
g(t) =ao + Za,. cosnt + by sinnt  with ag =0.5 (by inspection)

nx=l

' 2m b1
t
a.,,=l/ — cosntdt = 0. bn=l/ -t—sinmdt=—-l—
T fo 2% T Jo 27 ™

and

1
g(t) =05~ (sinr + lsin‘zr + lsinst + —sin4dt + )

2 3 4
1r 1 L4 1 n
[cos(f+§)+5cos<2r+5)+§co= (3t+72-) +z--]

8

1
n
1

0.5+

T
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The reason for vanishing of the cosines terms is that when 0.5 (the dc component) is subtracted from g(). the
remaining function has odd symmetry. Hence, the Fourier series would contain dc and sine terms only. Figure
$2.8-4¢ shows the plot of Cp, and 8.

(d) To = 7. wo = 2 and g¢(t) = 1.

ap = (by inspection).

a, =0 (n>0) because of odd symmetry.

w/4
by = i ifsin 2ntdt = -2— (—2— sinﬂ — cos ”—n-)
L " 7n \nn 2 2
4 1 4 1
= — sin 2t < — sin4t — —= sin 6t — — si
gft) — sin Tr\>m4 I sin 6t 7 sin 8¢ +

- : 1
=%cos(?t-%)+;rl-cos(4t—-g)+§-14?5cos(6t+%)+;cos(81+f2-)+-~

9



2.8-5

Figure S2.8-4d shows the plot of Cp, and 6.
(e) To = 3. wo = 27/3.

2 ! nrw 3 2mn  2nn 2nn
n=z { —tt = ———— didad —— i) — - ]
an =3 /0 cos = Smin? {cns 5t 38N ]
2 ! 2nw 3 2rn 2mn 2nn
by = = { SIN e 2 = e [§11] e o e -
) 3 /o sin — d T [sin 3 3 3

Therefore Cg = é and

3 / 472n2 2rn 47 27n . v - oo 5 - sin T \)
Cp = ———— - pekl L LRI L =t 1 k 3 . ]
T7Tn3 [\ 2+ 9 2cos 3 3 sin 3 and #, =tan cos 55 5 z%sin%ﬂ =y

(f) To = 6. wo = 7/3. ag = 0.5 (by inspection). Even symmetry; b, = 0.

4 3 nn
6‘/; g\;l)cos—a—df

0n = =
S Y R P 2(2 t) cos Sotdt
T3/ 3 . e

[cos AL Zmr]
T3 3

n2n?

)

'I‘h--O’w'i(coslt—gcosrf‘ 1cossw{ icc:sEl-tr---)
=T 39 Tty T3

Obxerve 1that even harmonics vanish. The reason is that if the dc (0.5) is subtracted from ¢(t). the resulring
function has half-wave symmetry. (See Prob. 2.8-6). Figure $2.8-4f shows the plot of Cy,.

An cven function g.it) and an odd function g.{7) have the property that

Gu(t) = gel—t) and eo(t) = —go{=t)

Fvery signal g(t) can be expressed as a sum of even and odd components because
9() = ${at) + g(-t)] + L [g(*) — g(~1)]
even o:d

From the definitions in Eq. {1). it can be seen that the first component on the right-hand side is an even
function. while the second component is odd. This is readily seen from the fact that replacing ¢ by —7 in the
first component yields the same function. The same maneuver in the second component yields the negative of

that component.
To find the odd and the even components of g{t) = u(t). we have

g{2) = ge(t) + go(t)

where {from Eq. (1)]

)~

ge(th = L (1) + u(-1)] = ;

and
1
9o(1) = § [u(t) — n(=1)} = Ssgn(t)
The even and odd components of the signal u(t) are shown in Fig. 52.8-5a.
Similarly. to find the odd and the even components of ¢(t} = e~ *'u(t), we have
g(1) = 9¢ (1) + qo(t)
where
ge(t) = % [p“’u(r) + r“u(—!)]

and

10




2.8-6

0.5] Del® 9,1t
. f o5

-0-5

(2

o.5 Q‘t*) 05 9’ L*)

(o] >
) -&5

Fig. 52.8-5

%(t) =3} [r‘“'"(t) - c‘“u(—t)]
The even and odd comnponents of the signal ¢~ (t) are shown in Fig. 52.8-5b.
For g(t) = ''. we have
et = ge(t) + go(t)
where

Ge(l) = [f'” + ".'j'] = cos t

(X1

and

golt) = -% [c’t - t‘"'] = jsint

(a) For half wave symmetry

and

2 To 2 To/2 To
and ty = —/ g{t) cosnwot dt = —-/ q(t) cos nwot dt +/ g(1) cos nwot dt
To Jo To Jo To/2

Let # =t — To/2 in the second integral. This gives

r rT0/2 To/2.
D) 0
n = -7':'- / g(t) cos nwot dt +/ [ (.-r + 22-9) €08 Nwo (:r + -7;2) d:r]
¢ LJo [ =
2 T To/2 To/2
= = / g(t) cosnwot dt + / —g{7)[- cos nwor] d.r]
To | /o 0
P r rTo/2
= — / g(t) cos niwot dt
To | Jo

In a similar way we can show that

4 To/2
by = —-/ g(t) sin nwot dt
To Jo
(b) (i) To=8. wo= 5. a0 =0 {by inspection). Half wave symmetry. Hence

11




4 4 2y nmT
an=§ [./o q(f)cos—tdt] 2 [/ -2-cos—4-tdt}

4
p (cos% + E;sin -’12— - l) (n odd)

fl

[l

)
4
=3 ("—71 sin = — ]) {n odd)

2 2
Therefore
y(3F-1) n=1509.13..
an =
-z-:(l'r-_." 1) n=3711,15 "
Similarly
1 21 nn 4 nr
bp = = - —_—tdt = - -—- = ——— i —
2/; 2sm td (sm cos 2 ) ) sm( ) ) (n odd)
and
= nw . nw
g(t) = f:s_ a, cos -—4—t + bnsin Tl

(ii) To = 27. wo = 1. ap = 0 (by inspection). Half wave symmetry. Hence

e ¥

g(t) = Z ay cosnt + by sinnt
n=1235 -

np = 3'/ 10 cos nt dt
1
0
2 ',—t/IO ] L
P [m(—o.l cosnt + nsmnr)]o (n odd)
2 r—’l’/lo 1
= = 0.
= [n3+0.01( R Y TR
(’
2 (c_,r/;o 1) = 0.0465

= 107(n? +0.01) nZ+0.01

and

by = 7—2;/ e~ 0ginnt dt
o
2[ e o1s z)]' (n odd)
= = | e (—{). 1 SIN Nt — nCOSN no
n? 4+ 0.01 o
- 2n -%/10 1.461n
= '(n2+o.01)(" =z +0.01

2.9-1 (a): To = 4.wo = 7/2. Also Do = 0 {by inspection).

X3
D, = 5 salnmi2t gy | amann /D gy o —2—sin LA n} > 1
L wr - 2

(b) To = 107, wo = 27/10m = 1/5

e ¥ .
(1) = Z D' %, where D, = Rl); e IE g = -2—;:-; (—2jsin ﬂ) = ;-]—sin

N= -

12




GNP

0121

| 1D,) :
1 .
o] 1
st TP
-n; - .3* !.%I o .

3

0.5 Th
.

-g | _g_"qr,s ‘;3.5.

Fig. S2.9-1

(c)
o
g(t) = Do + Z D.'™. where. by inspection Do =0.5

g n>0

2= .
D, = -1—/ Loty = | sothat |Dal= -]—-, and £Dn= {
@ J, 2m 27n 2mn 5 n<0

(d) To=7m.wo=2and Dn=0

t)= 3 Dpel? her D = /44' ‘2"‘dr—_j (—2-si'17m cosm’)
g(t) = Z ne where "= e ™ ¢ T an \mn 2 2

13




() To=3.wo=%.

~ . L
q(t) = Z Dn (’"L&M. where D, = %/ fP'JZ?'dt" Z;r%‘;l- [ -i%ge (12;”’ 1) - 1]

r=a. 0

Therefore
3 472 3."'_" cos £Zn 2"'" i 2_.
|Dal = inin? \/‘2 + "9'1 —~ 2cos 21:;-2 - 4—ﬂ”’-l-sin 2 and £Dp = tan™" ( o s:;)“ )
n 3 3 cos <3° + <F2sin £ -~

(f) To=6.00=7/3 Do =05

sty=05+ Y Dpe

NnE — o

nin? 3 3

-1 xnt 1 nnt 2 et
D. =3 U (t +2)0 T dt+/ oL ar,+/ (=t + 2)e~F m] -2 (cos 27 -cosgl-’l)
-2 -1 1

3¢ Cn (D!

24 15

14 ‘ | _ 1 3 Jllese 17
1 8

-8 -5 -‘ { 5 s n —>

A el

" n.%ﬂ'_
‘L -3 ]%i.
b3

_do—5 L—pte—3
~sIT * 1 () 1 ’5. 4 " l
3

Fig. §2.9-2

2.9-2
g(1) = 3cost + sin (5: - %) - 2cos (St - -;i)

For a compact trigonometric form. all terms must have cosine form and amplitudes must be positive. For this
reason. we rewrite g(t) as

g(t) = 3cost + cos (5'— i -2-) + 2cos (St - % ——1r)

2r 4ir
= t —— 2cos - —
3cost + cos (5t 3 ) +2 (8! 3 )

Figure $2.9-2a shows amplitude and phase spectra.

(b) By inspection of the trigonometric spectra in Fig. $2.9-2a, we plot the exponential spectra as shown in Fig.
$2.9-2b. By inspection of exponential spectra in Fig. $2.9-2a, we obtain

RRICTEE SIS 1(&—3,-)] + [,,J(!t—%)+(,—j(5t—-*g'-)}
L (,—j’g‘) o8 4 gn-,n + (%Fﬂf) eI 4 (e_,'.i_f-) o 38t

11—-—-

14
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2.9-3 (a)

9(t) = 2 + 2cos(2t — ) + cos(3t ~ g)
=2-2co0s2t +sin3t

(b) The exponential spectra are shown in Fig. $2.9-3.
(c) By inspection of exponential spectra

0l = 2+ [o7D 4 @ IBT] 4 2 (OB o (i)

=2+2cos(2t—1r)+cos(3t—§)

{d) Observe that the two expressions (trigonometric and exponential Fourier series) are equivalent.
2%. 10,1

, 2
.’ ‘e
- ‘Ir'\s
-4 o111 23 4

Fig. $2.9-3

2.9-4

1 To/2 To/2
Dy =— {/ f(t) cos nwot dt —j/ f(t)sin nwot dt}

To Ta/2 -To/2

If gt} is even. the second term on the right-hand side is zero because its integrand is an odd function of 1.
Hence. Dy, is real. In contrast. if g(t) is odd. the first term on the right-hand side is zero because its integrand
is an odd function of t. Hence. D, is imaginary.



Chapter 3

3.1-1

G(w) = /"' g(t)e It dt = ‘/’"‘ g(t) coswt dt —j/w g(t)sinwtdt

-~ —

If g(7) is an even function of 1. g(t)sinwt is an odd function of t, and the second integral vanishes. Moreover,
g(f)coswt is an even function of t. and the first integral is twice the integral over the interval 0 to oc. Thus
when g(t) is even

Glw) = Q/wg(t)coswtdt
0

Similar argument shows that when g(t) is odd

(1)

Glw) = —‘Zj/ g(t)sinwtdt
0

If git) is also real (in addition to being even), the integral (1) is real. Moreover from (1)

(2)

G(-2) = 2/wg(t)cos.ut dt = G(w)
o

Hence G ) is real and even function of w. Similar arguments can be used to prove the rest of the properties.
3.1-2

1 ~ 1 a o )
RPN 11 — 205(s) vt .
37 (1(.0)(‘ do = ——-27: [ I‘) (.aJ)!l‘ b C dw

-rn

=5‘;U !G(.u)!c‘os[.n+99(-d)]du:+j/ IG(-»)lsin{wHog(w-)ldd]

-

Since |G (w)| is an cven function and 6,(w) is an odd function of w. the integrand in the second integral is an
odd function of ».. and therefore vanishes. Moreover the integrand in the first integra! is an even function of w.
and therefore

ott) = 3 f 16w cosfut + 8,(w)] du
tJo
For g(1) = ¢ u(t), G(w) = =i=

=1 Therefore |G(w)| = 1/v&7 + a? and 6, (w) = — tan™(¥). Hence

~at 1 /m 1 -1 (W
e = - cos [;.:t — tan (—) dw
T Jo w* + a- a

3.1-3
G(w) = / g{t)e " dt
Therefore ~
G'(w):/ g (e dt
and -
c'(__,,)_—./ g (e " dt

16



3.1-4 (a)

T T —(w+a)T
G(u) = / poata—iwt dt = / e-(,‘u.;..)g dt = ] — o~ lwta
4] 1]

jw+a
(b)
T T e
G(u.l) = / ‘,at‘,-;ut dt = / l’.-(jw_‘) & = 1—-¢ [¢] )y
¢ 40 jw-a
3.1-5 (a)
1 ) ) y
Gw)= / 4Tt + / 20~ gy = 42077V QeI
o . 5
(b)

2] s ) r " ] 9
Gw) = f —;r_"“" dt +/ T—'c‘-""" dt = 1——2[cos;.:‘r +wrsinwr — 1)
- o w

-

This result could also be derived by observing that g(t) is an even function. Therefore from the result in Prob.

3.1-1
2 (7 2
Glw)= = tcoswtdt = ——zcoswt + wrsinwr — 1]
T Jo Tw
3.1-6 (a)
T et wo 242 _ 9) sin wot + 2wol COS wal
o(h = 2 g = 1 Kt it 42 - (wd 2) sin .Jo1 2wol O3 w0
G = G " wf

G ()
2 G (w) Gy ()

— e = _— S O s s

-2 =1 2 -2 o 2 L L

Fig. $3.1-6

{b) The derivation can be simplified by observing that G(.;) can be expressed as a sum of two gate functions
Gi(w) and G2{w) as shown in Fig. $3.1-6. Therefore

2 2 3 . .
=1 eV oy = gwt g jwot 5 | _ sin 2t +sin ¢
g(t)= 7 [JG:(.J) + Ga{w)) =5 {—/:25 (Lu+/: e d.u} =

1

3.1-7 (a)
v [
q(t) = ——/ cosw et duw
27 -2
piwt . o yw/2
= m {jtcosw + sn'r..z}_,,t/2
_ 1 cos (wf)
a1 -13) 2
(b)

l ' . 1 ' w0y
q(t) = -5:(-/ Clw)r!™ dw = 5 [/ G{w)coswt dw +j/ G(w)sinwfdu}
&1 —wo i

- -wg

Because G{w) is even function. the second integral on the right-hand side vanishes. Also the integrand of the
first term is an even function. Therefore

17



1 [™w w + twsin tw w0
o(t) = - Y ocostwdy = 1 [cost.u 2wsl ]
T Jo wo wwo t o

{coswot + wot sin wot — 1]

‘:T..:ofz

3.1-8 (a)

1 -0 | . l () .

9(1) = q_/ eTIwto gt g _/ piwlt=t0) g
«T 2’.’
— o
— Jw(t--t0) “ sinwo(t —to) wo .
- _ Sinwo(t —to) _ wo : ‘1
@mit—to) ) = —0) - sinclwo(t — o))
(b)

1 0 . wg )
g(t) = o / je’ dw +/ —je?*t dw
] o

= 1 rj“" ° _ 1 ”jwl ~0 = 1- coswot
2t —wo 2nt o mt

£

-5 l ET + -
Fig. $3.2-1

3.2-1 Figure S3.2-1 shows the plots of various functions. The function in part (a) is a gate function centered at the
origin and of width 2. The function in part (b) can be expressed as A (m“’v‘) This is a triangle pulse centered

at the origin and of width 100/3. The function in part (c) is a gate function rect(§) delayed by 10. In other
words it is a gate pulse centered at t = 10 and of width 8. The function in part (d) is a sinc pulse centered
at the origin and the first zero occurring at 52 = x, that is at w = 5. The function in part (e) is a sinc pulse
sinc(#) delayed by 107. For the sinc pulse sinc(%). the first zero occurs at § = ., that is at w = 57. Therefore
the function is a sinc pulse centered at w = 107 and its zeros spaced at intervals of 57 as shown in the fig.
S$3.2-1e. The function in part (f) is a product of a gate pulse (centered at the origin) of width 107 and a sinc
pulse (also centered at the origin) with zeros spaced at intervals of 5n. This results in the sinc pulse truncated

beyond the interval £57 (|| 2 57) as shown in Fig. {.
3.2-2 The function rect (t — 5) is centered at t = 5, has a width of unity. and its value over this interval is unity. Hence

o8 ) 5.5 1
Gle) = - __._0~_,..:i = _'__[(,"14.54 _ (,‘15‘5..:]
5 Jw s ¥
i —itw - 38 ;
I = . [{‘Ju/z - r~w/2] = L.... [2] sin ﬁ]
— jw 2

|‘ Jw

i ]
‘ = sinc (:;-) pTI%

o

18
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3.2-3

3.2-4

3.2-5

3.3-1

10+ j 104-»
g(t) = —}—/ ) AN = _iu-!_ = —-1-- [ej(‘°+')‘ - c’(m—')']
; 21 Jio-w 27 (jw) 1o_y J2mw
(,,7102 10t
= = [2) sin =t} = sinc(rt)e’
Jj2rw

Observe that 1 + sgn(t) = 2u(t). Adding pairs 7 and 12 in Table 3.1 and then dividing by 2 yields the desired

result.
Ohserve that

cos (wot + 0) = % [(?0t#9) 4 = ileot+]
= %n”(e"‘"" + %n"’e'j""_"

Fourier transform of the above equation yields the desired result.
(a)

u(t) = né(w) + -1—
Jw

2(2) Glw)

Application of duality property yields
wh(t) + —}- = 2ru(-w)
at e,
20 2ng(-w)
or

[ X1

[b(t) + ;1:;} = u(-w)

Application of Eq. (3.28) vields

=

1
[é(—t) - J—;F;] &= ulw)

But A(1: is an even function. that is #(~t) = #(t). and

1, ,
5[6(!) + -’a] <= u(w)
(b)

cos wot == 7[d(w + wo) + A(w — wo))
N e — s

o(t) G(w)

Application of duality property yields

n[B(t + wo) + 6(t - “°L] <=> 27 cos (—wow) = 27 cos (wow)

o) 2rg(-w)

Setting wo = T yields
t+TY+6(t—T) <> 2cos Tw
(c)

sin wo! <= j7[8(w + wo) — d{w — wo)]
e -

-

o) Glw)

Application of duality property yields

JIMt 4+ wo) = (t = wn)] == 27 sin{—wow) = —27 sin(wow)

G(e) 2rg(--w)

Setting wo = T yields

19



8(t+T) - b(t = T) <= 2jsin Tw

3.3-2 Fig. (b) 9,(t) = g(~1) and

=01 = Bl
w
Fig. (€) g2(1) = g(t — 1) + g1( ~ 1). Therefore

Ga(w) = [G(w) + G1(w))e ™ = [G(w) + G(-w)je ™

2e7Iw
= T(cosu +wsinw - 1)

Fig. (d) ga{t) = glt = 1) + @1 (1 + 1)

Ga(w) = G(w)e ™ 4+ G(~w)e?®

_1 . _4.2’-&1_.2(‘:‘)
_w2[2 2cos.u]—wzsm 7 = sinc’ (3

Fig. (e) g4(t) = g(t — 3) + g1(t + $). and

Gi(w) = Glw)e ™% 4 G (w)e?=!?
—jw/2

.2 2

- w

e v/

07 ¢ jueT 1

(! - jwel® — 1) +

:{']3{'(-’-0 sin %] = sinc (%})

Fig. (f) 95t} can be obtained in three steps: (i) time-expanding g(t) by a factor 2 {ii) then delaying it by 2
seconds. (iii) and multiplying it by 1.5 [we may interchange the sequence for steps (i} and (ii)l. The first step
(time-expansion by a factor 2) yields
! (1) = 2G(2w) = -1—(012“' — j2wei? - 1)
2 2.2
Second step of time delay of 2 secs. yields

t— 1 w - 12w 1 . o
1{52) = gt - irwe™ - e o L ja oo

The third step of multiplying the resulting signal by 1.5 vields

t - 3 _,
gs(t) = 1.5f (-—2—?’) < 2—;2-(1 - j2w-r "2"’)

2
\_ am

P Nyt
IN(e-M) Llie-1d

Fig. $3.3-3

g(t) = rect (t +TT/2)

3.3-3 (a)

PN

cost am-)Ql S s (t-l’t_) u(é-{‘) |

——rect(t_:n)



and

G(w) = Tsinc (fET-) [e19T/2 _ omieT 12

R wTyY . T
= 2]TSlnC (-—2—) sin T

L :(ﬁl)
—dsm D)

(b) From Fig. S3.3-3b we verify that
a(t) = sintu(t) -+ sin(t — n)u(t — =)

Note that sin(t — 7)u(t — ) is sin tu(t) delayed by #. Now. sintu(t) &= £[A(w ~1) = 8(w+1)] + s and

JeIm

sin(t — #)u(t - m) == {%[6@ -1)-bw+1)]+ 3

Therefore
1

1-w2

Glw) = {211[»(,,- 1) - 6w + 1)) + 1+ e77™)

Recall that g{r)é(z ~ z0) = ¢(70)8(7 — 70). Therefore #{w £ 1)(1+¢™7"™) = 0. and

1

G(.a.') = - ‘_‘;2

(1+e79"™)
(c) From Fig. 5§3.3-3c we verify that |

g(t) = cost [u(f) -u (f - %)] = costu(t) — costu (f - %)
But sin(t = ) = —cost. Therefore

git) = costu(t) + sin (' - %) Y (' - :'5)

LT . J.a) k) . i 1 —ima /2
G(*‘)—E[A(u}—l)""h(**‘l)]‘*’ 1-d2+{§7(0(w—1)—6(*+1)]+]_uz}(’ ’

Also because ¢(r)(r ~ 10) = g(rp)d(r — 10).

Blux )™ 2 2 b(ut e = 2jo(w 2 1)
Therefore
Jjw pmITw/2

1 .
1—w’+ 1-o? 1_d2[1u+0

G(.u) = '-J'“/zl

(d)

g(t) = 7% ult) —u(t = T) = " u(t) — " “u(t -~ T)
= ¢ %(1) - e oTam00=Thyp T)

— ———

1 -=aT : 1
G(...;) = r _0—JwT = [1 _ e-(o+,1u)7'l
Jw+to jw+a jw+a

3.3-4 From time-shifting property
g(t £ T) &= Gluw)e* T
Therefore
it +T)+ gt = T) = G(w)e™T + G(w)r T = 2G(w) coswT

We can use this result to derive transforms of signals in Fig. P3.3-4.
(a) Here g(t) is a gate pulse as shown in Fig. $3.3-4a.
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t
g(t) = rect (-2») <= 2sinc(w)
Also T = 3. The signal in Fig. P3.3-4a is g(* + 3) + g{t -~ 3), and

9(t + 3) + g(t — 3) &= 4sinc(w) cos 3w

(b) Here g(t) is a triangular pulse shown in Fig. $3.3-4b. From the Table 3.1 (pair 19)

g(t) = A (é) <= sinc? (%)
Also T = 3. The signal in Fig. P3.3-4b is g(t + 3) + g(* — 3), and

9t +3)+g(t - 3) = 2 sinc? (-3)-) cos Jw

a) G2
i

- \ t-» -7 It

Fig. S3.3-4

3.3-5 Frequency-shifting property states that

_(;(r)r"""‘Jot &3 G(w T wo)

Therefore
: 1. PR L = Jjwot 1 ; i
g{1)sin oot = -27;q\l)r' + g(t)e J= 2—j[G(u-«:o)+G(~'—-70)}
Time-shifting property states that

(1 £ T) &= G(u)e*?7

Therefore
Qt = T) = g(t = T) &= G(w)e’T = G(w)e™ ™7 = 2jC(w)sinwT
and
.2—1,7{9!’ +T)-g(t-T)) &= G(v)sinTw

The signal in Fig. P3.3-3 is g(f + 3) — g(t — 3) where
g(t) = rect (%) &= 2sinc(w)
Therefore
g(t + 3) — g(t — 3) <= 2j[2sinc(w)sin 3w] = 4j sinc(w) sin 3w

3.3-8 Fig. (a) The signal g(t) in this case is a triangle puise A(f;) (Fig. 83.3-6) multiplied by cos 10t.

g(t)= A (ﬁ%) cos 10t

Also from Table 3.1 (pair 19) A(£) <= 7 sincz(-"f) From the modulation property (3.35), it follows that

gty =A (55;) cos 101 &= -’2: {sinc2 [.’.r_(f_z__.l.o_).] + sinc? [W(W; 10)}}

The Fourier transform in this case is a real function and we need only the amplitude spectrum in this case as
shown in Fig. $3.3-6a.

Fig. (b) The signal g(t) here is the same as the signal in Fig. (a) delayed by 2x. From time shifting property.
its Fourier transform is the same as in part (a) multiplied by e ~#*(3*) Therefore

22
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o 6 2 10 12 1y

3.3-7

Fig. $3.3-6

Gior=Z {sincz [m = 10)] + sinc? [f_(év‘ + m)] } - s3me
2 y 2

2

The Fourier transform in this case is the same as that in part (a) multiplied by /2", This multiplying factor
represents a linear phase spectrum —2nw. Thus we have an amplitude spectrum [same as in part (a)] as well as
a linear phase spectrum G{+) = —27w as shown in Fig. §3.3-6b. the amplitude spectrum in this case as shovn
in Fig. $3.3-6h.

Note: In the above solution. we first multiplied the triangle pulse A(;’;) by cos 10t and then delayed the result
by 27. This means the signal in Fig. (b) is expressed as A('—:ril)cos 10(¢ — 27).

\We could have interchangzed the operation in this particular case, that is. the triangle pulse A(Q-‘—*) is first delayved
by 27 and then the result is multiplied by cos 10¢. In this alternate procedure. the signal in Fig. (b) is expressed
as A('—;,_t)cns 101.

This interchange of operation is permissible here only because the sinusoid cos 10t executes integral number of
cveles in the interval 2r. Because of this both the expressions are equivalent since cos 10{t ~ 2r) = cos 101.
Fig. (c) In this case the signal is identical to that in Fig. b. except that the basic pulse is rect (5= ) instead of
a triangle pulse A{z-). Now

t
rect (5;) < 2 sinc(rw)
Using the same argument as for part (b). we obtain

G(w) = n{sinc[x(w + 10)] + sinc[r(w — 10)]}o~7*"

(a)
G(w) = rect (w 2_ 4) + rect (f_;_4)

Also

1 (e

;r-smc(t) &= rect (2)
Therefore

g(t) = %sinc(t)costtt
(b)

Clw) = A(“:") +A (“’;4)

Also
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1. 2 w
- sinc (t) &= A (z)
Therefore
2. 2
g(t) = Ssinc (t) cos 4t
3.3-8 From the frequency convolution property, we obtain
9(t) <= 5-G() » Gw)

The width property of convolution states that if ¢;(z) = c2(x) = y(z), then the width of y(z) is equal to the
sum of the widths of ri() and ¢2(r). Hence, the width of G(w) » G(w) is twice the width of G{w). Repeated
application of this argument shows that the bandwidth of g"(t) is nB Hz (n tines the bandwidth of g(1)).

3.3-9 (a)
° T 2 i4 T
Gw) = / pTI dt —/ eI dt = — =1 - cos wT) = &= sin? (——)
-T 0 Jw o 2
(b)
q(t) = rect (£+TT/—2-> — rect (t _;/2)
rect (i) <=> Tsinc (-“i)
T 2
tx T/g s :‘Z +,0777
rect( T ) =>Tsmc( 7 )e
and
o A&TY | juTi2 -T2
G(w) = Tsinc (-é-) (2772 = g sT12)
= 2jT'sinc %) sin%z
- (<)
(c)
& st +T) — 26() + 8(t - T)
dr Y )+ 4(t -

The Fourier transform of this equation yields

JwGw) = T =24 79T = _9[1 - cos wT) = —4sin’ (%Z)

Therefore
= Mg (:"_T.)
G(w) — sin 2
3.3-10 .
A basic demodulator is shown in Fig. $3.3-10a. The product of the modulated signal g(t) coswoet with 2 coswot
yields

a(1) coswot x 2 coswof = 2g(t) cos? wot = g(1)[1 + cos 2w0t] = g(t) + g(t) cos 20t

The product contains the desired g(7) (whose spectrum is centered at . = 0) and the unwanted signal ¢(t) cos 2u-ot
with spectrum £{G(w+2wo]+G (w - 2wo!. which is centered at +2.50. The two spectra are nonoverlapping because
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3.4-1

3.5-1

glt)eosd,t ad

| LowPass I
= iter

Lcos Ot
Fig. S3.3-10

Gaf DD

7 pry

14 4

‘H'l (e ”:_(@)

) -200wyli 202 i W~> _l}n- wr w->
; 4

2 G, t9) N'la') G (DD
-20500T | 2g0907 w-> T ST o O
Fig. §3.4-1

W < .o (See Fig. S3.3-10b). We can suppress the unwanted signal by passing the product through a lowpass
filler as shown in Fig. $3.3-10a.

C1{«) = sinc(zg%3) and Gzlw)=1
Figure 83.4-1 shows Gi(«). Ga(w). Hi(~) and Hz(w). Now

Yi(w) = Gi{w)H(w)
Y2 (w) = Ga(w)Ha(w)

The spectra Y1(w) and Y2(w) are also shown in Fig. $3.4-1. Because y(t) = 51(t)ya(t), the frequency convolution
property yields Y (w) = ¥1(w) * Y2(w). From the width property of convolution, it follows that the bandwidth of
Y (w) is the sum of bandwidths of ¥;(w) and Y2(w). Because the bandwidths of Y;(w) and Ya(w) are 10 kHz. 5
kHz. respectively. the bandwidth of Y (w) is 15 kHz.

H(uJ) = c—ku’c—jwto

Using pair 22 (Table 3.1) and time-shifting property, we get

hit pm(t=t0)?/4x
)= 7

This is noncausal. Hence the filter is unrealizable. Also

/ lln]H(w)H /
o~ TS E1

'J

du=oo




3.5-2

ht)

L]
'
\J
t .
() t-
Figure S3.5-1

Hence the filter is noncausal and therefore unrealizable. Since h(t) is a Gaussian function delayed by to. it looks
as shown in the adjacent figure. Choosing to = 3v/2k, 1(0) = ~*5 = 0.011 or 1.1% of its peak value. Hence
to = 3V 2k is a reasonable choice to make the filter approximately realizable.

2 x 105 - jwtg
w? + 1010

From pair 3. Table 3.1 and time-shifting property, we get

H(w) =

h(t) =e" 10%4e-tol

The impulse response is noncausal. and the filter is unrealizable.

h{©

Figure $3.5-2

The exponential delays to 1.8% at 4 times constants. Hence to = 4/a = 4 x 10™% = 40.s is a reasonable choice
to make this filter approximately realizable.

3.5-3 From the results in Example 3.16

1 6
} V= - T e— = ]
{H ()i 7 = o5 0

Also H(0) = 1. Hence if w, is the frequency where the amplitude response drops to 0.95. then

106 ,
[H ()| = ﬁﬁ =095=uw; = 3?8. 684

Moreover. the time delay is given by (see Example 3.16)

a _1_ -6
W =>f4(0)—a—10

1f w3 is the frequency where the time delay drops to 0.98% of its value at w = 0. then

t,‘(w) =

108 _s
talc = = 0. = .857
a{wa) b I 0.98 x 107° == wy = 142,857

We select the smaller of wy and w2. that is w = 142,857, where both the specifications are satisfied. This vields
a frequency of 22,736.4 Hz.

3.5-4 There is a typo in this example. The time delay tolerance should be 4% instead of 1%.

The band of Aw = 2000 centered at w = 10° represents the frequency range from 0.99 x 10° to 1.01 x 10°. Let
us consider the gains and the time delays at the band edges. From Example 3.16

|H (o) = —mm taw) = ——>  a=10"

Vot al T +a?

At the edges of the band
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| Sy - -3 Sy 03 = -3
{H(0.99 x 10 )!—m%m—lﬂ.lxlo , and |H(1.01 x 10 “-:mrﬁm 9.901 x 10

The gain variation over the band is only 1.99%. Similarly, we find the time delays at the band edges as

s 3 s ! _ 1
t4(0.99 x 10%) = ———lm(ohggx,g) —oF = zsrh 5 and  tg(1.01 x10°) = “_om‘od) TT5° = oo

The time delay variation over the band is 4%. Hence, the transmission may be considered distortionless. The
signal is transmitted with a gain and time delay at the center of the band, that is at w = 10%. We also find
[H{10%) = 0.01 and 74(10%) = 1— 7. Hence, if g(t) is the input. the corresponding output is

y(t) = 0.019(t — 1077)

g

J - - t»
J i"— 9 (t-t>rT) i's gt-t-T)
Fig. 83.6-1
3.6-1
Y(w) = G(w)rect (T_“."E) o lwtorksinwT)
x~ G(w)rect (4:3) [1 = jk sin WT]e 7%t

This follows from the fact that ¢ = 1 + 7 when » « 1. Moreover, G{w)rect (ﬁ) = G(w) because G(u) is
bandlimited to B Hz. Hence

Y (o) = Glw)e ™ " — jkG(w)sin LT r™/*"

Moreover. we can show that (see Prob. 3.3-5)
%(9(' +T) - g{t - T)] &= G{)sinwT
Hence

W1 = gt = to) + Sla(t ~ to — T) ~ gt = to + T)]

Figure $3.6-1 shows g¢(1) and y(t).

3.6-2 Recall that the transfer function of an ideal time delay of I seconds is e~/“T. Hence. the transfer function of
the equalizer in Fig. P3.6-2 is

Heq(w) = ag + 07798t 4 g0 /28t 4 . 4 g, 0 Il

Ideally. we require the equalizer to have

1
[Heal ] sesired = T 7m0t
B I B T R U
The cqualizer in Fig. P3.6-2 approximates this expression if we select ag = l. a1 = —a. 02 = a® ., an =

(-1)"a™.
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3.7-1

~ 1 ™ 3,2
E, = 21 } o ee—— > t%/e it
g ./—’b.q()dt 2””2/:’”:’ ¢

Letting £ = 3 and consequently dt = Sydr

E. = 1 LA (_,2/2‘1 _ V2r 1
T TERV, N * = Y ore 207
Also from pair 22 (Table 3.1)

G(w) = =772

1 1 ™ o
E,-_--i;/ |G(w);’¢u_§; e dw

Letting 7w = 3 and consequently dw = ;—575(11:

1 1 - van 1
E),= —e—rt " 2 ey o =
g 2”0\/’.7,/_,‘0 T mevs 2

S

3.7-2 Consider a signal

g(t) = sinc(kt) and G(~)=£"°“‘ (5*?)

:;-

2
E,:/ sinc (kf)dt-———/ 3 rect :—)} dw
= -—'-. dw =
242 /:k

>0

3.7-3 Recall that

~

92(‘)=§']';/ Ga(w)r’**dw and / g (e dt = G (-w)

Therefore

/ qi1(t)g2(t)dt = 5‘;/ a(t) [/ Gz(w)c"" dw] dt
= .217,/.,” Ga(w) [‘/-wm(t)cf“'dt] dw = :‘,l,'r’/cl(-w)G:(.u)d.u

Interchanging the roles of g1 (t) and g2(?) in the above development, we can show that

| atmtyi= g [~ 6i)Ga-v) e

™

3.7-4 In the generalized Parseval's theorem in Prob. 3.7-3. if we identify g1(t) = sinc (2xBt — m#) and g2(t) =
sinc (2= Bt - n=), then

Giw) = ‘2—15!'8'31 (—-E) e, and Ga(w) = -Z—IErect (Z%E) o FF

Therefore

/.m 91(Nga(t)dt = 53: (_2_%_)7/_: [reﬂ (4_,‘:‘3')]2'“"-"1)“ "

~

But rect (%) =1 for j«} < 27 B. and is 0 otherwise. Hence
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~u v B
”—m)w 0 n#m
/ g1{t)ga(t) dt = 1 BT gy = { #

o~ 8xB2 | , o 5 n=m
In evaluating the integral. we used the fact that ¢*/2"% = | when k is an integer.
3.7-5 Application of duality property [Eq. (3.24)] to pair 3 (Table 3.1) yields

t? iaaz 2me” el

The signal energy is given by

E, = 1 [2re % doy = 4w e gy, = Eid
'/ 0

a

The energy contained within the band (0 to W ) is
w 2n
Ew = 41r/ eT W gy = =1 - e72W]
0 a

If Ew- = 0.99E,. then
W 2001 = W=

2
2.3025 rad/s = 0.366 Hz
o a

3.7-6 If g%(t) &= A(w). then the output Y(u) = A(w)H (w). where H(w) is the lowpass filter transfer function (Fig.

§3.7-6). Because this filter band Af — 0. we may express it as an impulse function of area 47Af. Thus,
H(w) = [4nAflo(w) and Y(w)=x [4nA(w)Af]6(w) = [4TA(0)ASIMW)
Here we used the property g(r)8(7) = g(0)4(r) {Eq. (1.23a)]. This yields
y(t) = 24(0)Af

Next. because g%(t) &= A(x). we have

e 53

A(.;)=/1 a*(1)e™7*t dt  so that A(0)=/ g2(t)dt = E,

~ -~

Hence. y(t) = 2E,Af.

L RO0 D
~ ©D
g 4TAF
| W 4 >

Fig. §3.7-6

3.8-1 Let g(t) = gi(t) + g2(t). Then

T/2
Ry(T) = Jim %/ [91(2) + g2(t)]igs (t + 7) + ga2{t + 7)] dt
Eitiad -T2
=Ry, (7) + Rga(7) -+ Ry 02 (7) + Royag, (7)

where

1 [T
Reylr) = _rlim_ -]:/ r{Oy(t + 7)dt

iiad T/2
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3.8-2

If we let g1(t) = C1cos(wrt + 61) and ga(t) = Cacos(wat + A2). then

T/2
Ryiga(7) = llm %/ C1C32 cos{w;t + #) cos(wat + weT + f2) dt
T -T/2

According to the argument used in Example 2.2b. the integral on the right-hand side is zero. Hence. Ry, ,(7) = 0.
Using the same argument. we have Ry, (r) = 0. Therefore

2 2
Ro(r) = Ry (1) + Ry (7) = S cosanr + S coswar

This result can be extended to a sum of any number of sinusoids as long as the frequency of each sinusoid is
distinct. hence. if

~ > 2
g(t) = Z Cn cos(nwot + 8,) then Ry(r) = z 921‘» cosnuwoT

n=1 na=l

Moreover, for go(t) = Co, Rg(7) = C3, and

T/2
Rgoq () = hm —1'/ CoCicos(wit +wyT +0y)dt =
T -TI2

Thus. we can generalize the result as follows. If

g(t) = Co + i Cr cos(nwgt + 0n) then Ro(r)=C¢ + i -C;—;'-’- COS NwgT
n=1 n=1
and N
Sy(w) = 2rC3a(=) + % z:!C,":{b(u — nwo) + b(w + nwo)]
Figure $3.8-2a shows the waveforins r{t) and 7(f — 1) for 7 < Tp/2. Let T = NT,. On the average. there are

N/2 pulses in the waveform of duration T. The area under the product x(t)z{(t — 1) is N/2 times (%’* - 7)as
shown in Fig. $3.8-2b. Therefore

y [T2
R(7) = hm —/ r(t)r(t - 7)dt

T~ T [_7/5

! L _1(1_:_) L
Nh—--,NTo?(Q ’)"2 5w/) T3

11 _Irl T
"2(2 T.) <3

For 1} < jr] £ Ts. there is no overlap between pulses, and R (1) =0. For Tp < 7| £ -"-}1 pulses again overlap.
But on the average. only half pulses overlap. Hence, R () repeats every T, seconds, but only with half the
magnitude. as shown in Fig. $3.8-2c. We can express R.(7) as a sum of two components. as shown in Fig.
$3.8-2d. Thus. R:(7) = Ri(7) + Ra(r). The PSD is the sum of the Fourier transforms of R,(7) and Ra(r).

Hence

Se(w) = ¢ s ginc? (‘-"-?) + S2(w)

where S2(w) is the Fourier transform of the periodic triangle function, shown in Fig. S3.8-2d. We find the
exponential Fourier series for this periodic signal to be

= MWy T 2” )
Ra(r)= 3 Dur w =

n=—r

Using Eq. (2.80). we find Dy = sgsinc (1'-3) Hence, according to Eq. (3.41)

Sa{w) = -;- i sincz(%’-r-) d(w ~ nuwe) Wy = .27.%

n= -
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3
s -3T% -Is ' p
- 28 3 i T %
P 2 ~ :E Z - =
(d)
1 Sx(w)
—er -ar 1 e
L} 6 () ® %
Fig. S3.8-2
Tlnéxefore
Ty . wTy o= nmw 2
Sz(w) = -]—; sinc? (—4—) +3 Z sinc ? (-—2-) &(w — nws) wo = =
3.8-3 J/({w) = ;4 and Hw)? = =

P ~ o ~
2y = 1 - =+ L Si3
(a) (= "/0 Kdu=o and yi ()= "/o w2+]du =3
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3 1 [} 1 Mt o = L
(b) -f(')=;;/odw=; and y(t)=;;/°;'a':7“'z
ANy LT AAsAe ~ ~
- &Moo —
(&) 2= [ bw-do=+ and ()= Ao-by, -1 [ e,
LA . [, wi+l LIS 2

3.8-4 The ideal differentiator transfer function is jw. Hence, the transfer function of the entire system is

= ] Sy dw s
H("')_(j.u+1)("“’)"ju+x and |H (w)!

w2+l
AAPNA L9 1
. 1
() = l/ rect ("—J) d.v=-]-/ dw = ~
T Jo 2 * Jo k4
AAAAL

~ , 2 12 :
1/2(f)= }-/ rect (ﬁ)Tw-—du: 1 -—“-)-—-du=l(l—:) = 0.06831
% Jo 2/ W41 o W s 4
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Chapter 4
“

4.2-1 (i) For i (t) = cos 1000t

¥nsa.sc(t) = m(t) cos 10,000t = cos 10001 cos 10, 000t
1
= = . t
2 |cos 9000t + cos 11.000¢]
LSB UsB
(ii) For 1 (1) = 2 cos 1000t + cos 2000+

= m(t) cos 10. 000t = |2 cos 1000t + cos 2000¢] cos 10. 000¢

“¥pep.sc(t)

= cos 90007 + cos 11. 000+ + -,l;lcos 8000t + cos 12. 0007}

= {cos 90001 + '-;-cos 80001 + [cos 11,000t + %cos 12.000¢}

-

LSB Uss

(iii) For mi /1) = cos 10001 cos 3000+

¢nsp.cc(t) = m(t)cos 10,000t = %[cos 2000¢ + cos 4000t} cos 10, 000t
= l[cos 80007 + cos 12.000t) + l[cos 6000t + cos 14, 000¢]

{cos 8000t + cos 6000¢] + L 05 12. 0001 + cos 14. 000t}
LSB use

NJI'—'

This information is summarized in a table below. Figure S4.2-1 shows varinus spectra.

Modujated $ignal specfmm

Mewd
‘LL ot Bl es 11

-0l néoa ~ieod -49c00 : . qceeoe
o
1° 1.1
+1 1.1+ 21 T2
-2::1 :coo E 2 AT T oK = 3K [ W > P A IR R
@i T“
Hﬁu 11t i T4 11t
-4k O] a 4K -p,y‘ ~12K -8 ~6M el W 6K 8K 12K 14K
Fig. §4.2-1
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(a)

T/ 1e0 VEB — « iSB 't LSB—LMUQE .
-0 teo __plcoo o' L-> ieeec
(i)
M(2)  (a)
2
2 Wi\
_ ush 3% ;ng
- O] L — —|0'C'O o

veh -
. e 5B
|‘ .. w - - QP60
- < 1 (S ‘
Fig. S4.2-2 g
o e eeaas ..T/z ] ( :i
UEB ~a fRe L5 P 14 Lsﬁ"g_ vsé
A N
-10 0D o> 1dooe -
7 4 :
..-"/‘11- --t > o ®»
Fig. 84.2-3
case { Baseband frequency | DSB frequency | LSﬁequency | USB frequency |
i 1000 9000 and 11,000 | 9000 11.000 |
ii 1000 9000 and 11,000 | 9000 11,000 |
2000 8000 and 12.000 [ 8000 ] 12,000 ]
i 2000 8000 and 12.000 T 8000 [ 12,000 j
4000 6000 and 14.000 | 6000 | 14000 |

4.2-2 The relevant plots are shown in Fig. §4.2-2.

4.2-3 The relevant plots are shown in Fig. 54.2-3.
4.2-4 (a) The signal at point b is

ga(t) = m(t) cos” wet

3 1
= m(t) [% coswel + 2 cos 3«1:!]
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The term gm(i)cos wet is the desired modulated signal, whose spectrum is centered at fw.. The remaining
term 1m(t) cos 3wt is the unwanted term, which represents the modulated signal with carrier frequency 3w,
with spectrum centered at £3u. as shown in Fig. $4.2-4. The bandpass filter centered at Zw. allows to pass
the desired term 3 (t) cos wt. but suppresses the unwanted term m(t)cos3w.t. Hence. this system works as
desired with the output Zim(t) coswet.

(b) Figure S4.2-4 shows the spectra at points b and c.

(¢) The minimum usable value of w. is 2B in order to avoid spectral folding at dc.

(d)
m(t)

wmi(t) cos? wet = =~ (1 + cos 2wt]
1 1
= = - )
= 2m(t) + gm(t) cos 2wt
The signal at point b consists of the baseband signal %m(f) and a modulated signal %m(t) cos 2w ?, which has a
carrier frequency 2w. . not the desired value w.. Both the components will be suppressed by the filter. whose
center center frequency is w.. Hence, this system will not do the desired job.

{e) The reader may verify that the identity for cos nw.t contains a term cosw.t when n is odd. This is not true
when n is even. Hence. the system works for a carrier cos™ uct only when n is odd.

! | at(E)
- ; N

4 « - W > 34z

a &

o

Fig. S4.2-4

4.2-5 We use the ring modulator shown in Fig. 4.6 with the carrier frequency f. = 100 kHz (@, = 2007 x 10%). and

4.2-8

the output bandpass filter centered at f. = 300 kHz. The output v,(t) is found in Eq. (4.7b) as

() = :4; [m(t) Cos Wt — %m(t)cos 3.t + -z;m(t) €os Swet + - - ]

The output bandpass filter suppresses sll the terms except the one centered at 300 kHz (corresponding to the
carrier 3Z.t). Hence. the filter ourput is

-4 .
y(t) = 3—"-m(1.) cos 3.t
This is the desired output km(t)cosw.t with k = —4/3nr.
T'he resistance of each diode is r chms while conducting. and oo when off. When the carrier A cos w.f is positive.
the diodes conduct (during the entire positive half cycle). and when the carrier is negative the diodes are open
{during the entire negative half cycle). Thus, during the positive half cycle. the voltage -Fg-;g‘)(f) appeals across

each of the resistors . During the negative half cycle. the output voltage is zero. Therefore, the diodes act as
a gate in the circuit that is basically a voltage divider with a gain 2It/(R + ). The output is therefore

2n
1) = e
eo(f) e rw(t)m(/)
The period of u:(t) is To = 2% /w.. Hence. from Eq. (2.75)
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w(t) = 3 + 3 [COB wel — %cos Swet + ; cos Swct + - ]

The output rg(t) is

2R 2R 1.2/ 1 1 ) }
1) = — 2 c— ¢ - -— — - %, - Swelt +---
rol(t) o (t)n(t) 7 +r"'(') [2 += (cos wet — 3 cos 3wt + 5 co8 Suwe
(a) I we pass the output co{t) through a bandband filter (centered at wc). the filter suppresses the signal m(t) and
m{(t) cos nwet for all n # 1, Jeaving only the modulated term —(%&-Sm(t)cosucf intact. Hence. the system acts
as a modulator.

(b) The same circuit can be used as a demodulator if we use a basepass filter at the output. In this case, the input
is @(t) = ru(1) coswet and the output is ;&%m(z).

4.2-7 From the results in Prob. 4.2-6. the output eg(t) = km(t)cosw.t, where k = s$7=. In the present case.
m(t) = sin{wct + A). Hence, the output is

eo(t) = ksin(wet + 6) cosw,t = %[sinﬁ + sin(2wct + 8))

The lowpass filter suppresses the sinusoid of frequency 2w, and transmits only the dc term §sin 8.
at @ ot B

Tk | 5 ok (5K, W - 10K, | 5K Z_;EK

at (@
ADNA ! OO

=35 -20 35 WO

m, (4
s 20000T LPFE b—- .
cos (o coct
. m, (¢ )
| L LPF

Fig. S4.2-8

4.2-8 (a) Fig. 54.2-8 shows the signals at points a. b. and c.
(b) From the spectrurn at point c. it is clear that the channel bandwndth must be at least 30.000 rad/s {from
5000 to 35.000 rad/s.).
(c) Fig. 54.2-8 shows the receiver to recover sn1(t) and ma(t) from the received modulated signal.

4.2-9 (a) 54.2-9 shows the output signal spectrum Y («).
(b) Observe that Y («) is the same as Af(w) with the frequency spectrum inverted. that is. the high frequencies
are shifted to lower frequencies and vice versa. ‘Thus, the scrambler in Fig. P4.2-0 inverts the frequency spectrum.

36



-le

Fig. $4.3-2

To get back the original spectrum Al (). we need to invert the spectrum Y () once again. This can he done by
passing the scrambled signal y(7) through the same scrambier.

4.2-10 We use the ring modulator shown in Fig. 4.6. except that the input is m(t) cos(27)10°% instead of m(t}. The
carrier frequency is 200 kHz [w. = (4007)10%}. and the output bandpass filter is centered at 400 kHz. The
output r,(t) is found in Eq. (4.7b) as

vty = i’m(i)cos(2:)1061}n~0(1) = %m(f)cos('.’:’-)l(}st [cos (4007)10%t - %ccs 3(4001&')103!. + %cos 5(4001:)1011 -+ ]

The product of the terms (—1/3)cos 3(400r)10% and (4/7)m(t)cos(27)10% yields the desired term

- & m(t) cos (8007)10"1. whose spectrum is centered at 400 kHz. It alone passes through the bandpass filter
3n

(centered at 400 kHz). All the other terms are suppressed. The desired output is

y(t) = — <21 (t) cos (8007)10°¢
3r
4.3-1 go(t) = |A + m(t)] coswt. Hence.

9s(t) = |A + m(1)] cos® wet
= %{-‘1 + m{t)] + %[A + m(t}] cos 2wt

The first term is a lowpass signal because its spectrum is centered at uw = 0. The lowpass filter allows this tenn
to pass. hut suppresses the second term. whose spectrum is centered at £2w.. Hence the output of the lowpass
filter is

W(t) = A+ m(1)

When this signal is passed through a dc block, the dc terin A is suppressed yielding the output m{t). This
shows that the system can demodulate AM signal regardliess of the value of A. This is a synchronous or colierent
demodulation.
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4.3-2

(a) Il=0.5=%'i2=.129 = A =720
(b) It=1.0=13#=-1X0 = A=10
() ll-=2-0=£%’-=17? =4=5
() ,‘=m=!.;.z=l} = A=0

This means that j: = 5o represents the DSB-SC case. Figure $4.3-2 shows various waveforms.
4.3-3 (a) According to Eq. (4.10a), the carrier amplitude is 4 = mp/u = 10/0.8 = 12.8. The carrier power is
P.= 4%/2 = 78.125.

mt)

Fig. S4.3-3

(b) The sideband power is m?(#)/2. Because of symmetry of amplitude values every quarter cycle. the power of
m{t) may be computed by averaging the signal energy over a quarter cycle only. Over a quarter cycle in(t) can
be represented as m{t) = 40t/Ty (see Fig. 54.3-3). Hence.

IAAA- To/4 2
2 1 [40r]
1) = -_— = 33.
m(t) 70/4'/0 T dt = 33.34

The sideband power is

The efliciency is

P, 16.67 ~
"B+ P 78125+ 1667 100 = 19.66%

4.3-4 From Fig. $S4.3-4 it is clear that the envelope of the signal m (1) cosw.t is |m(t)]. The signal [A + mi(t)] cosw,t is
identical to m(t) cosw.t with m(t) veplaced by A + m(t). Hence. using the previous argument, it is clear that
its envelope is JA + m(f). Now. if A+ m(t) > 0 for all t, then A + m(t) = |A + m(t)]. Thevefore. the condition
for demodulating AM signal using envelope detector is 4 + m(t) > 0 for all 1.

- m(t)zcos 2Tt

L4




[A+meedfeos et

mLe) é) + 2mtdcos <€
CosS

' [A-meeY] eos gt
Fig. S4.3-5

4.3-5 When an input to a DSB-Sc generator is 1 (t), the corresponding output is 1a(t) coswct. Clearly. if the input is
A + m(1). the corresponding output will be [A + m(t)] cosw,t. This is precisely the AM signal. Thus. by adding
a dc of value A to the baseband signal m (7). we can generate AM signal using a DSB-SC generator.
The converse is generally not true. However, we can generate DSB-SC using AM generators if we use two
identical AN generators in a balanced scheme shown in Fig. $54.3-5 to cancel out the carrier component.

4.3-6 When an input to a DSB-SC demodulator is mn(t) coswct. the corresponding output is m(t). Clearly. if the
input is {4 + rv (1)) cos w!. the corresponding output will A + m(t). By blocking the dc component A from this
output. we can demodulate the AM signal using a DSB-SC demodulator.

The converse. unfortunately. is not true. This is because. when an input to an AM demodulator is (1) coswct.
the corresponding output is | (t}| [the envelope of m(t)]. Hence. unless m(t) > 0 for all ¢, it is not possible to
demoduiate DSB-SC signal using an AN demodulator.

2A

L 2 2
- 2A

Fig. S4.8-7
4.3-7 Observe thar m2(1) = A® for all 1. Hence. the tine average of in?(t) is also A2. Thus

AL
P = m?3(t)
T2
The carrier amplitude is A = mp/it = mp = A. Hence P. = A%/2. The total power is P, = F’. + P, = A*. The
power efficiency is

ANy 2
mz(t) = A® _A;.

24,
1,=%x100=%4; x 100 = 0.5

The AM signal for y = 1 is shown in Fig. $4.3-7.
4.3-8 'The signal 2t point a is |4 + m(t)] cos wct. The signal at point b is

A% + 24m{t) + m3(1)
9

(1 + cos 2 t)

(1) =4+ m(1)} cos® wet =

The lowpass filter suppresses the term containing cos 2u.t. Hence. the signal at point ¢ is

- A

w(t) = A2+2A/u2(f)+7n’(l) _ _Aiz [l + 2m(t) N (1"%{)’)2}

Usually. m(t)/.4 « 1 for most of the time. Only when m (1) is near its peak, this condition is violated. Hence.
the output at point d is
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2
u(t) = -42- + Am(l)

A blocking capacitor will suppress the dc term A%/2, yielding the output Am(t). From the signal w(t). we see
that the distortion component is m2()/2.

4.4-1 In Fig. 4.14. when the carrier is cos [{Aw)t + 8) or sin [(Aw)t + 6], we have

T1{t) = 2{my (L) co8wet + ma(t) sinwet]cos [(we + Aw)t + 8}
= 2m (1) coswetcos {{wc + Aw)t + 8] + 2m2(1) sinw.t cos [(we + Aw)t + 6]
= my(t){cos [(Aw)t + 8] + cos [(2we + Aw)t + 6]} + ma2(t){sin {(2we + Aw)t + 8] — sin [(Aw)t + 4]}

Similarly

T2(t) = iy (t){sin [(2we + Aw) + 8] + sin [(Aw)t + 8]} + m2(1){cos (ALt + 8) = cos [(2ue + Aw)t + 8]}
After 7,(2) and x2(t) are passed through lowpass filter. the outputs are

my(t) = myi(t)cos [(Aw)t + 4] — ma(1)sin [(Aw)t + 6]
ma(t) = mi{t)sin [(Aw)t + 8] + ma(t) cos [(Aw)t + 6]

4.5-1 To generate a DSB-SC signal from m{f). we multiply m(t) with cosw.!. However. to generate the SSB signals
of the same relative magnitude. it is convenient to multiply m(t) with 2cosw.t. This also avoids the nuisance
of the fractions 1/2. and yields the DSB-SC spectrum M (w — we) + M (w +w.). We suppress the USB spectrum
(above «. and below —..) to obtain the LSB spectrum. Similarly. to obtain the USB spectrum. we suppress
the LSB spectrum (between —w. and w¢) from the DSB-SC spectrum. Figures 54.5-1 a. b and ¢ show the three

cases.
(a)From Fig. a. we can express ¢, ., () = cos 900t and ., (1) = cos 1100t

(b}From Fig. b. we can express ¢, ¢q(t) = 2c0s 700t + cos 9007 and £ .¢5(t) = cos 1100t + 2 cos 13001.
{c)From Fig. c. we can express ¢ ¢g(t) = 1{cos 400t + cos 600t] and p,.qg (t) = 3[cos 1400t + cos 1600t

4.5-2
Frsg{t) = m(t)coswet — ma(t)sinwet and Prsp () = m(t)coswet + mp(t)sinwt

(a) m(t) = cos 100t and m,(t) = sin 100t. Hence,
¥rea(t) = cos 100t cos 10007 + sin 100t sin 1000 = cos(1000 — 100)t = cos 9007

Prgp (t) = cos 100t cos 1000t — sin 100t sin 1000t = cos(1000 + 100)t = cos 1100t
(b) m(t) = cos 1001 + 2 cos 300t and m(t) = sin 100t + 2sin 300t. Hence,

¥1ep(t) = (cos 100t + 2 cos 300t) cos 1000t + (sin 100t + 2sin 300t) sin 1000t = cos 900t + 2 cos 700!

Zoualt) = (cos 100t + 2 cos 300t) cos 1000/ — (sin 100t + 2sin 300t) sin 1000t = cos 1100t + 2 cos 1300¢

(c) m(t) = cos 100! cos 500t = 0.5 cos 400t + 0.5 cos 600t and m (1) = 0.55in 400t + 0.5sin 600¢. Hence.

Frep () = {0.5c0s 400t + 0.5 cos 600t) cos 1000t + (0.5sin 400t + 0.5sin 600t) sin 1000t = 0.5 cos 400t + 0.5 cos 600t

a(t) = (0.5 cos 400t + 0.5 cos 600¢) cos 1000t — (0.5 sin 400t + 0.5 sin 600t) sin 10001 = 0.5 cos 1400t + 0.5 cos 1600t
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Fig. 34.5-5

4.5-3 (a) Figure S4.5-3a shows the spectrum of m(t) and Fig. 54.5-3b shows the corresponding DSB-SC spectrum
211 cos 10,00077‘(’-
(b; Figure $4.5-3c shows the corresponding LSB spectrum obtained by suppressing the USB spectrum.
(¢} Figure $4.5-3d shows the corresponding USB spectrum obtained by suppressing the LSB spectrum.
\We now find the inverse Fourier transforms of the LSB and USB spectra from Table 3.1 (pair 18) and the

frequency shifting property as
#1ep (1) = 1000 sinc (100071) cos 90007t
@Yosp(t} = 1000sinc (10007t) cos 11, 000t
4.5-4 Because My{w) = —jM(.)sgn (w). the transfer function of a Hilbert transformer is
H(w) = —jsgn(w)
If we apply my(t) at the input of the Hilbert transformer. Y (w). the spectrum of the output signal y(t) is

Y (w) = Mp(w)H(w) = [-jM(w) sgn (w)][-jsgn (w)] = -7 {w) AN
This shows that the Hilbert transform of m,(t) is —mn(1). To show that the energies of i (t) and mn(t) are

equal. we have

Em =/ mi()dt = -2-1;/ M[(“’)lz‘.""

- ad 2., _ 1 ~ 2 - 1 ~ 2 2 — 1 ~ 2 -
Em, —-[ milt)dt = ,-2—,;'/-&!“;.(..:)} dw = ‘__Tﬂ—/:xi,‘\l(.d)l |isgn (W)" dw = 5;-‘/_"’{,\](..))! de=Em

~
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4.5-5

4.5-6

The incoming SSB signal at the receiver is given by [Eq. (4.17b)]

Crep (t) = m(t) coswet + mp(t) sin wet

Let the local carrier be cos [(we + Aw)t + 8]. The prodeuct of the incoming signal and the local carrier is eq4(t).
given by

calt) = w4 (t) cos [(we + Aw)t + 8]
= 2{m{t)coswet + mn(t) sinwct] cos {we + Aw)t + &)

The lowpass filter suppresses the sum frequency component centered at the frequency (2w, + Aw). and passes
only the difference frequency component centered at the frequency Aw. Hence, the filter output eo(t) is given
by

co(t) = m(t) cos(Dw)t + 8) — mu(t) sin(Aw)t + 6)

Observe that if both A and 4 are zero. the output is given by

eo(t) = m(t)

as expected. If only # = 0. then the output is given by

co{t) = m(t) cos(Aw)t — ma(t)sin(Aw)t

This is an USB signal corresponding to a carrier frequency Aw as shown in Fig. 54.5-5b. This spectrum is the
same as the spectrum A/ («) with each frequency component shifted by a frequency Aw-. This changes the sound
of an audio signal slightly. For voice signals. the frequency shift within £20 Hz is considered tolerable. Most US
systems. however.iestrict the shift to 2 Hz.

{b) When only Aw = 0. the lowpass filter output is

eolt) = m(t)cosé — my(t)sind

We now show that this is a phase distortion, where each frequency component of A/(.) is shifted in phase by
amount ¢. The Fourier transform of this equation yields

Eg(w) = M (w)cosd — Alp(w)sind
But from Eq. (4.14b)

—jMWw) w>0

Mp(w) = —jsgn (w)M(w) = { A () <0
A (w w

and

M(w) e w>0
M (w)e st w<0

Eo(w) = {

It follows that the amplitude spectrum of eqg(?) is M (w). the same as that for m(t). But the phase of each
component is shifted by 4. Phase distortion generally is not a serious problem with voice signals, because the
human ear is somewhat insensitive to phase distortion. Such distortion may change the quality of speech. but
the voice is still intelligible. In video signals and data transmission. however, phase distortion may be intolerable.

We showed in prob. 4.5-4 that the Hilbeﬁ transform of m(t) is —rn(t). Hence, if my(t) linstead of m(t)] is
applied at the input in Fig. 4.20. the USB output is

y(1) = mn(t) coswet — () sin wet

= m(t) cos (ucl + %) + 1 4(t) sin (u-'cf. + %)
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Thus. if we apply 1n4(t) at the input of the Fig. 4.20. the USB output is an LSB signal corresponding to m{#).
The cairier also acquires a phase shift 7 /2. Similarly. we can show that if we apply ma{t) at the input of the
Fig. 4.20. the LSB output would be an USB signal corresponding to m(t) (with a carrier phase shifted by #/2).

From Eq. (4.20)

1

= < 2r
H;(.& +u)c) -+ Hu(&d —w’c) l“‘)l - B

Hg(w’)

Figure 84.6-1a shows H,(w — w.) and H,(« + w¢). Figure $4.6-1b shows the reciprocal. which is Ho(w).

A station can be heard at its allocated frequency 1500 kHz as well as at its image frequency. The two frequencies
are 2fir Hz apart. In the present case. fir = 455 kHz. Hence. the image frequency is 2 x 455 = 910 kHz apart.
Therefore. the station will also be heard if the recejver is tuned to frequency 1560-910 = 590 kHz. The reason for
this is as follows. When the receiver is tuned to 590 kHz, the local oscillator frequency is fino = 590+455 = 1045
kHz. Now this frequency fLo is multiplied with the incoming signal of frequency f. = 1500 kHz. The output
vields the two modulated signals whose carrier frequencies are the sum and difference frequencies. which ave
1300 + 1045 = 2545 kHz and 1500 — 1045 = 455 kHz. The sum carrier is suppressed. but the difference carrier
passes through. and the station is received.

The local oscillator generates frequencies in the range 1+8=9 MHz to 30+8=38 MHz. \When the recciver setting
is 10MHz. fLo = 10 + 8 = 18 MHz. Now. if there is a station at 18 + 8 = 26 MHz. it will beat (mix) with
fro = 18 MHz to produce two signals centered at 26 + 18 = 44 MHz and at 26 — 18 = 8 MHz. The sum
component is suppressed by the IF filter. but the diflerence component, which is centered at 8 MHz. passes
through the IF filter.
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Chapter 5
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Fig. S5.1-1

5.1-1 In this case fc = 10 MHz. inp = 1 and my = 8000.

For FM :

Af = kpmp/27 = 27 x 10°/2% = 10° Hz. Also fo = 10". Hence, (fi)mux = 107 + 16° = 10.1 MHz. and
(f)min = 107 = 10° = 9.9 MHz. The carrier frequency
increases linearly from 9.9 MHz to 10.1 MHz over a quarter (rising) cvcle of duration a seconds. For the next a
secands. when 10 (t) = 1. the carrier frequency remains at 10.1 MHz. Over the next quarter (the falling) cycle of
duration a. the carrier frequency decreases linearly from 10.1 MHz to 9.9 MHz., and over the last quarter cycle,

when i (t) = ~1. the carrier frequency remains at 9.9 MHz. This cycles repeats periodically with the period 4a
seconds as shown in Fig. 85.1-1a.

For PM :

Af = kpmy/27 = 507 x 800027 = 2 x 10° Hz. Also f. = 107. Hence. (f.)max = 107 + 2 x 10*> = 10.2 MHz.

and (f)mn = 107 - 2 x 10° = 9.8 MHz. Figure $5.1-1b shows (). We conclude that the frequency remains at
10.2 MHz over the (rising) quarter cycle, where 1 (t) = 8000. For the next a seconds, rn(t) = 0. and the carrier
frequency remains at 10 MHz. Over the next a seconds, where (t) = —8000. the carrier frequency remains at
9.8 AMHz. Over the last quarter cycle ri(t) = 0 again, and the carrier frequency remains at 10 MHz. This cycles
repeats periodically with the period 4a seconds as shown in Fig. $5.1-1.

5.1-2 In this case fe = 1 MHz. mp = 1 and m, = 2000.

For FM :
Af = kgm, /27 = 20,0007/27 = 10* Hz. Also f. = 1 MHz. Hence, (fi)mux = 10° + 10* = 1.01 MHz. and
(f)min = 10% = 10% = O 99 MHz. The carrier frequency rises linearly from 0.98 MHz to 1.01 MHz over the cycle

(over the inrerval — -1— <t< 3-5-) Then instantaneously, the carrier frequency falls to 0.99 MHz and starts
rising linearly to 10.0] MHz over the next cycle. The cycle repeats periodically with period 10~ as shown in

Fig. 85.1-2a.

For PM :

Here. because m(t) has jump discontinuities. we shall use a direct approach. For convenience, we select the
origin for n:(t) as shown in Fig. $5.1-2. Over the interval -‘9{—’ to -1%’- we can express the message signal as

(1) = 2000t. Hence.

£pull) =cos [2#(10)6t + -}m(f)]
= Cos [21(10)61 + %20001]
= cos [21!(10)6! + 1000xt] = cos [2n (10° + 500) t]

At the discontinuity. the amount of jump is g = 2. Hence, the phase discontinuity is kpmma = =. Therefore,
the carvier frequency is constant throughout at 10% + 500 Hz. But at the points of discontinuities. there is a
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phase discontinuity of 7 radians as shown in Fig. §5.1-2b. In this case, we must maintain k, < 7 because there
is a discontinuity of the amount 2. For k, > 7, the phase discontinuity will be higher than 2x giving rise to
ambiguity in demodulation.

5.1.3
(a) ¢pPai(t) = Acos fwet + kpm(t)] = 10 cos[10, 000t + kpm(t)]
We are given that ¢pai{t) = 10 cos (13.000¢) with kp = 1000. Clearly, m(t) = 3t over the interval |t| < 1.

t t
{(b)  ¢rul(t) = Acos [-;cl + k‘[/ m(a)da] = 10 cos [10.0001 + k,/ m(a)da]
¢ t
Therefore ks / m(a)da = 1000 / m{a)da = 3000t
t
Hence 3t = / m(a)da = m(t)=3

5.2-1 In this case k; = 1000% and k, = 1. For

m(t) = 2 cos 100t + 18 cos 20007t and m(t) = —200 sin 100t — 36. 0007 sin 2000t

Therefore mp = 20 and rnj, = 36.000r + 200. Also the baseband signal bandwidth B = 2000%/2x =} kHz.

For FM : : Af = kymp/2n = 10.000. and Brn = 2(Af + B) = 2(20.000 + 1000) = 42 kHz.
For PM : : Af = kpmp/2% = 18,000 + 32 Hz. and Bpy = 2(Af + B) = 2(18.031.83 + 1000) == 38.06366

kHz=.
5.2-2 ¢\ (1) = 10 cos(wct + 0.1 sin 20007t). Here, the baseband signal bandwidth B = 20007 /27 = 1000 Hz. Also,
wi{t) = we + 2007 cos 20007t . _"
Therefore. Aw = 2007 and Af = 100 Hz and Bgnm = 2(Af + B) = 2(100 + 1000) = 2.2 kHz. <

5.2-3 ppy(t) = 5 cos(w.t + 20 sin 10007t + 10 sin 20007¢).
Here. the baseband signal bandwidth B = 2000n/2r = 1000 Hz. Also,

w, (1) = we + 20,0007 cos 10007t + 20,0607 cos 200071
Therefore. Aw = 20, 0007 +20. 0007 = 40,0007 and Af = 20 kHz and Ben = 2(Af+ B) = 2(20. 000+1000) =

kHz.

5.2-4 The baseband sngnal bandwidth B = 3 x 1000 = 3000 Hz.
For FM : i’,’-"z 1x1 = 15.95] kHz and Brm = 2(Af + B) = 37.831 kHaz.
For PM : = -3-,-2 = ’°;5°°° = 31.831 kHz and Bpym = 2(Af + B) = 66.662 kHz.

5.2-5 The baseband signal bandwidth B = 5 x 1000 = 5000 Hz.
For FM: Af= -'551-':1 = 272l = | kHz and Bryv = 2(Af + B) = 2(2+ 5) = 14 kHz.
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For PM : To find BPM. we observe from Fig. $5.1-2 that @, (t) is essentially a sequence of sinusoidal pulses
of width T = 10~ seconds and of frequency f. = 1 MHz. Such a pulse and its spectrum are depicted in Figs.
3.22c and d. respectively. The bandwidth of the pulse, as seen from Fig. 3.22d, is 4« /T rad/s or 2/T Hz. Hence.
Bpa = 2 kHz.

526 (a) For FM: Af= +¢ 200000721 = 100 kHz and the baseband signal bandwidth B = 232% = | kHz.
Therefore

Brm = 2(Af + B) = 202 kHz

ForPM: Af= "" = 10x20007 — 10 kHz and Bpm = 2(Af + B) = 2(1o+ 1) = 22 kHaz.
(b) (1) = 2 sin 20001ri and B = 20007 /2% = 1 kHz. Also 1, = 2 and m,, = 4000~.

For FM : Af = 2472 = 200.000mx3 _ 900 kHy, and

Bra = 2(Af + B) = 2(200 + 1) = 402 kHz

For PM: Af=1%e - = 20 kHz and Bpy = 2(Af + B) = 2(20 + 1) = 42 kHz.
(c) rn(t) = sin 40001rt and B = 40001r/'21r = 2 kHz. Also m, =1 and m;, = 4000~.
For FM : Af = T2 - 200.00mx) _ 100 kHg, and

Brat = 2(Af + B) = 2(100 + 2) = 204 kHz

For PM: Af= &,L,’,‘-z = 40240007 — 20 kHz and Bpyn = 2(Af + B) = 2(20 + 2) = 44 kHz.

(d) Doubling the amplitude of (1) roughly doubles the bandwidth of both FM and PM. Doubling the frequency
of m(t) jexpanding the spectrum A/(w) by a factor 2] has hardly any effect on the FM bandwidth. However. it
roughly doubles the bandwidth of PM. indicating that PM spectrum is sensitive to the shape of the baseband
speetrum. FM spectrum is relatively insensitive to the nature of the spectrum Af(w).

5.2-7 From pair 22(Table 3.1). we obtain ¢™° «=> /T c~*°/. The spectrum M (w) = /7 e~ /4 is a Gaussian pulse.
which decays rapidly. Its 3 dB bandwidth is 1.178 rad/s=0.187 Hz. This is an extremely small bandwidih
compared 10 Af.

Also 1i(1) = =2te=1*/2_ The spectrum of rie(t) is M'(w) = jwM (w) = j/Twe~="/4. This spectrum also decas
rapidly away from the origin. and its bandwidth can also be assumed to be negligible compared to A f.
For FM : Af =472 = 80007x1 — 3 kH; and Bry = 2Af = 2 x 3 = 6 kHz.

For PM : To find . we set the derivative of r(t) = —2tet?/2 equal to zero. This yields

Wt) = =207 4 420 220 =t=

Sl

and mp, = ri'(71§) = 0.858. and

= %27 - 8000rx08%8 . 343) kHz and Bpw =~ 2(Af) = 2(3.432) = 6.864 kHz.

5.3-1 The block diagram of the design is shown in Fig. §5.3-1.

g: asiM

£ =12 1635 M
f_:..:ﬂ_a_xms % lEMHé -.BG‘PSS“E_*—J,)(@Q——)-———
&= 10Hy, Af-1250 He { Af:1250 h——Af="TBK
t0-268 Mtz
Fig. §5.3-1
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ﬁ_.'z 200 KHz X G \ fo=1228M 8PF fe=3MHe %32 fo=q6M

Af-qTe50H 2 — Af-c25Hz 3MHE] Af-625Hz

5.3-2
5.4-1

5.4-2

5.4-3

and

q-8§MHz

Fig. §5.3-2

The block diagram of the design is shown in Fig. $5.3-2.

(a) wpM(t) = Acos [wet + kpm(t))

When this wpni(?) is passed through an ideal FM demodulator, the output is kprit{t) This signal. when passed
through an ideal integrator. yields k,m(t). Hence. FM demodulator followed by an ideal integrator acts as a PM
demodulator. However. if m(f) has a discontinuity, m(t) = oo at the point(s) of discontinuity. and the system
wil} fail.

(b) ¢Falt) = Acos [uc'+k,/ m(a)do]

When this signal ¢ra(?) is passed through an ideal PM demodulator, the output is ky f‘ m(a)da. When this
signal is passed through an ideal differentiator, the output is ky(t). Hence. PM demodulator. followed by an
ideal] differentiator. acts as FM demodulator regardless of whether i (t) has jump discontinuities or not.

Figure §5.4-2 shows the waveforms at points b. c. d. and e. The figure is self explanatory.

From Eq. (5.30). the Laplace transform of the phase error 8.(t) is given by

O (5) = B(s)

s+ AKH(»)
For A.(1) = kt*. ©,(s) = % and

2k

Ol = T ARHR

The steady-state phase error [Eq. (5 33)] is

2k

T+ aAR) . ”°

lim A (t) = lim s0,.(+)
t-em =9
Hence. the incoming signal cannot be tracked. If
s+a 2k
HE=== then 80) = or e awE

wnd 2k 2k
(1) = w0 = I ARG ) - Ake

Hence. the incoming signal can be tracked within a constant phase 2k/Aka radians. Now, if

2 . oL
Hixy= 22238 then  @u(s) = — 2k .
« 52 {s + m.’.;_:_ez] ‘
lim 6,(t) = lim s6¢(s) = lim 2ks =0
eon e = R = R T AK(s2 +as+b)

In this case. the incoming signal can he tracked with zero phase error.
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Chapter 6

6.1-1

G.1-2

6.1-3

The bandwidths of ¢;(t) and g2(t) are 100 kHz and 150 kHz, respectively. Therefore the Nyquist sampling rates
for ¢1(t) is 200 kHz and for g2(#) is 300 kHz.

Also g1%(t) <= s-q1(«) * ©1(w), and from the width property of convolution the bandwidth of g,?(t) is twice
the bandwidth of g;(t) and that of g2”(#) is three times the bandwidth of ga(t) (se also Prob. 4.3-10). Similarly
the bandwidth of g;{t)g3(¢) is the sum of the bandwidth of g; (t) and g2(t). Therefore the Nyquist rate for @it
is 400 kHz. for g27(t) is 900 kHz. for g1(t)g2(?) is 500 kHz.

(a)

sinc1007t) <= 0.01rect (=)
The bandwidth of this signal is 100 = rad/s or 50 Hz. The Nyquist rate is 100 Hz (samples/sec).
(b)

sinc?(1007?) e= 0.01A (%)
The bandwidth of this signal is 200 n rad/s or 100 Hz. The Nyquist rate is 200 Iiz (samples/sec).
(c)

sinc (10071) + sinc (50mt) «=> 0.01rect 0.01 (58 ) + 0.02rect (33%)

The bandwidth of the first term on the right-hand side is 50 Hz and the second term is 25 Hz. Clearly the
bandwidth of the composite signal is the higher of the two, that is. 100 Hz. The Nyquist rate is 200 Hz

‘'samples/sec).

(d)
sinc(10071) + 3sinc? (60mt) «=s 0.01 rect(5557) + %5 O5557)

The bandwidth of rect(53%=) is 50 Hz and that of A(53%=) is 60 Hz. The bandwidth of the sum is the higher of
the two. that is. 60 Hz. The Nyquist sampling rate is 120 Hz.

(e)

sinc(507t) <=+ 0.02 rect(3£5z)
sinc(1007t) <= 0.01 rect(5#%:)

The two signals have bandwidths 25 Hz and 50 Hz respectively. The spectrum of the product of two signals is
1/2% times the convolution of their spectra. From width property of the convolution, the width of the convoluted
signal is the sum of the widths of the signals convolved. Therefore. the bandwidth of sinc(50#1)sinc(1007¢) is
25 + 50 = 75 Hz. The Nyquist rate is 150 Hz.

The pulse train is a periodic signal with fundamental frequency 2B Hz. Hence, w, = 27{2B) = 4nB. The period
is To = 1/2B. It is an even function of t. Hence, the Fourier series for the pulse train can be expressed as

rr.{t) =Co+ Z Cr cosnw,t

n=}
Using Eqs. (2.72). we obtain
1/168 5 [1/16B
ng=Cp= = dr=-l-, a..=C,,=~'-/ cosnw.tdt=—2—sin(ﬂ). bp=0
0J_1/168 4 To J_\ /168 nw 4

Hence.
g(1) = g(t)pT, (1)

>
1 2 . /nnm
= ¢t E il —_— wyt
4q(f) + — sm( 1 ) g(t) cos nw
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6.1-4 For g(t) = sinc?(5n1) (Fig. S6.1-4a). the spectrum is G(w) = 0.2 A(sg;) (Fig. 86.1-4b). The bandwidth of this
signal is 5 Hz (107 rad/s). Consequently, the Nyquist rate is 10 Hz, that is. we must sample the signal at a rate

no less than 10 samples/s. The Nyquist interval is T = 1/2B = 0.1 second.
Recall that the sampled signal spectrum consists of (1/T)G{w) = 9,3 O(3%;) repeating periodicaily with a period
cqual to the sampling frequency f, Hz. We present this information in the following Table for three sampling
rates: f, = 5 Hz (undersampling). 10 Hz (Nyquist rate). and 20 Hz (oversampling).

G(w) comments

A (;‘&;) l Undersampling l

2A (s¢s) | Nyquist Rate |

sampling interval T

sampling frequency f,
0.2

5 Hz

91

10 Hz 0.1
20 Hz 0.05 44 (5% ) | Oversampling )
In the first case {undersampling). the sampling rate is 5 Hz (5 samples/sec.), and the spectrum s}=G(..;) repeats

every 5 Hz (107 rad/sec.). The successive spectra overlap, as shown in Fig. §6.1-4d, and the spectrum G(w) is
not recoverable from G(«). that is. g(t) cannot be reconstructed from its samples §(t) in Fig. S6.1-4c. If the

sampled signal is passed through an ideal lowpass filter of bandwidth 5 Hz. the output spectrum is rect (=)



and the output signal is 10sinc (20xt), which is not the desired signal sinc 2(571). In the second case. we use
the Nyquist sampling rate of 10 Hz (Fig. $6.1-4e). The spectrum G(w) consists of back-to-back. nonoverlapping
repetitions of #G(w) repeating every 10 Hz. Hence, G(w) can be recovered from G(w) using an ideal lowpass
filter of bandwidth 5 Hz (Fig. $6.1-4f). The output is 10sinc >(5x1). Finally, in the last case of oversampling
(sampling rate 20 Hz). the spectrum G(w) consists of nonoverlapping repetitions of $G(«) (repeating every
20 Hz) with empty band between successive cycles (Fig. $6.1-4h). Hence, G(w) can be recovered from G(w)
using an ideal lowpass filter or even a practical lowpass filter (shown dotted in Fig. $6.1-4h). The output is
20 sinc *(3t).

6.1-5 This scheine is analyzed fully in Problem 3.4-1, where we found the bandwidths of y:1(t), y2(t ,andy(;) to be 10
kHz, 5 kHz. and 15 kHz, respectively. Hence, the Nyquist rates for the three signals are 20 kHz, 10 kHz. and 30
kHz. respectively. .

6.1-6 (a) When the input to this filter is 4(t). the output of the summer is 4(t) — 8(t — T). This acts as the input to
the integrator. And, /(7). the output of the integrator is:

PR TN

t e I
h(t) = / [8(r) = 8(r = T)]dr = u(t) - u(t — T) = rect ('——FI)
[J

The impulse response h(t) is shown in Fig. $6.1-6a.
(b) The transfer function of this circuit is:

H(w) = Tsinc (“—322) e IwT/2

si i?—
mnc 3

The amplitude response of the filter is shown in Fig. $6.1-6b. Observe that the filter is a lowpass filter of
bandwidth 2= /T rad/s or 1/T Hz. ’
The impulse response of the circuit is a rectangular pulse. When a sampled signal is applied at the input. each
sample generates a rectangular pulse at the output. proportional to the corresponding sample value. Hence the
output 15 a staircase approximation of the input as gxown in Fig. 56.1-6¢c.

and
IH(w)!=T

Figure S6.1-8

6.1-7 (a) Figure S6.1-7a shows the signal reconstruction from its samples using the first-order hold circuit. Each
sample generates a triangle of width 27 and centered at the sampling instant. The height of the triangle is equal
ro the sample value. The resulting signal consists of straight line segments joining the sample tops.

(b) The transfer function of this circuit is:

H(w) = Fininy = 7 {a () } = Tsine? (g)
Because H(w) is positive for all w, it also represents the amplitude response. Fig. $6.1-7b shows the impulse

response /i(t) = A(gp). The corresponding amplitude response H(w) and the ideal amplitude response {lowpass)

required for signal reconstruction is shown in Fig. §6.1-7c.
(c) A minimum of T secs delay is required 1o make h(t) causal (realizable). Such a delay would cause the

reconstructed signal in Fiﬁ' $6.1-7a to be delayed by T secs.
(d) When the input to the first filter is A(t). then as shown in Prob. 6.1-4, its output is a rectangular pulse

p(t) = u(t) — u{t — T) shown in Fig. S6.1-4a. This pulse p(t) is applied to the input of the second identical filter.
The output of the summer of the second filter is p(t) — p{t — T') = u(t) = 2u(t — T) + u(t — 2T), which is applied
to the integrator. The output h(t) of the integrator is the area under p(t) — p(t — T). which, as ..

t .
h(ty= / (r)=2u(r = T)+u(r =2T))dr =tu(t) =20t = Thu(t = T)+ (t —2T)u(t - 2T) = A (-'-—;—{)
o
shown in Fig. $6.1-7b.

6.1-8 Assume a signal ¢(?) that is simultaneously timelimited and bandlimited. Let g(w) = 0 for |w| > 27 B. Therefore
glwjrect (§25) = g(«) for B' > B. Therefore from the time-convolution property (3.43)

g(t) = g(t) » {2B'sinc(27B't))
= 2B'g(t) + sinc(27B't)
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Because g(t) is timelimited. g(t) = 0 for || > T. But g(t) is equal to convolution of g(t) with sinc(27 B't) which
is not timelimited. It is impossible to obtain a time-limited signal from the convolution of a time-limited signal
with a non-timelimited signal.

(a) Since 128 = 27. we need 7 bits/character.
(b)For 100,000 characters/second . we need 700 kbits/second.
(a) 8 bits/character and 800 kbits/second.

(a) The bandwidth is 15 kHz. The Nyquist rate is 30 kHz.

(b) 63536 = 2'°. so that 16 binary digits are needed to encode each sample.
(c) 30000 x 16 = 480000 bits/s.

(d) 44100 x 16 = 705600 bits/s.

(a) The Nyquist rate is 2 x 4.5 x 106 = 9 MHz. The actual sampling rate = 1.2 x 9 = 10.8 MHz.
(b) 1024 = 2'°, so that 10 bits or binary pulses are needed to encode each sample.
(c) 10.8 x 10® x 10 = 108 x 10° or 108 Mbits/s.

If 1, is the peak sample amplitude. then

{0.2) ()
t < __.__Z_ Np
quan ization error 100 500

Because the maximum quantization error is a¥ = %ﬂ = Z£ it follows that

mp _

7= ﬁ% == L =500
Because L should be a power of 2. we choose L = 512 = 2°. This requires a 9-bit binary code per sampie. The
Nvquist rate is 2 x 1000 = 2000 Hz. 20% above this rate is 2000 x 1.2 = 2400 Hz. Thus. each signal has 2400
samples/second. and each sample is encoded by 9 bits. Therefore. each signal uses 9 x 2400 = 21.6 kbits/second.
Five such signals are multiplexed. hence. we need a total of 5 x 21.6 = 108 kBits/second data bits. Framing
and synchronization requires additional 0.5% bits, that is, 108, 000 x 0.005 = 540 bits, yielding a total of 108540
bits/second. The minimum transmission bandwidth is 18§34 = 54.27 kHz.

Nyquist rate for each signal is 200 Hz.

The sampling rate f, = 2 x Nyquist rate = 400 Hz

Total number of samples for 10 sngnals = 400 x 10 = 4000 samples/second.
Quantization error < —wl —55

Moreover. quantization error = &t = 352 = T2 — T =>L=400
Because L is a power of 2, we select L = 512 = 2°. that is, 9 bits/sample.
Therefore, the minimum bit rate = 9 x 4000 = 36 kbits/second.

The minimum cable bandwidth is 36/2=18 kHz.

For a sinusoid. 2';-‘,‘1 = 0.5. The SNR = 47 dB =50119. From Eq. (6.16)
P

W
%"- =322y ‘” =30%(0.5) = 50119 == L = 182.8
°
Because L is a power of 2. we select L = 256 = 25, The SNR for this value of L is
nasma
2= 31.”1’-"—'(,'-1 3(256)%(0.5) = 98304 = 49.43 dB
No my
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For this periodic v (t). each quarter cycle takes on the same set of amplitude values. Hence, each quarter cycle
contributes identical energy. Consequently, we can compute the power for this signal by averaging its energy
over a quarter cycle. The equation of the first quarter cycle as shown in Fig. $6.2-7 is m(t) = 4A/T,. where A is
the peak amplitude and T is the period of m(t). The power or the mean squared value (energy averaged over
a quarter cycle)} is

APAAR To/4 2 2
=57 ), (To) “=3

2 2
me(t A</3
tence. —élp = + = ll

The rest of the solution is identical to that of Prob. 6.2-6. From Eq. (6.16). SNR of 47 dB is a ratio of 50119. is

So gflls(f) 2
oo 3L — = 3L°(1/3) = 50119 == L = 22387
i r

Because L is a power of 2. we select L = 256 = 2%, The SNR for this value of L is

So -rln.!(f)
== = 3L —— = 3(256)%(1/3) = 65536 = 48.16 dB
No my

Here 1 = 100 and the SNR = 45 dB= 31,622.77. From Eq. (6.18)

So 3L?

TV—O' = m = 31,622.77 == L. = 47383

Because L is a power of 2. we select L = 512 = 2°. The SNR for this value of L is

So _ 3(312)* o o,
Ne = TmToi = %0922:84 = 45.67 4B
(a) Nyquist rate = 2 x 10° Hz. The actual sampling rate is 1.5 x (2 x 10%) = 3 x 10® Hz. Moreover. L = 256
and p = 255. From Eq. (6.18)

So _  3L*  3(2%6)° _

No M+ DJ2_ (n256)2 6394 = 38.06 4B
(b) If we reduce the sampling rate and increase the value of L so that the same number of bits/second is
maintained. we can improve the SNR (because of increased L) with the same bandwidth. In part (a). the
sampling rate is 3 x 10° Hz and each sample is encoded by 8 bits (L = 256). Hence. the transmission rate is
8 x 3 x 10° = 24 Mbits/second.
If we reduce the sampling rate to 2.4 x 10° (20% above the Nyquist rate), then for the same transmission rate
(24 Mbits/s). we can have (24 x 108)/(2.4 x 10%) = 10 bits/sample. This results in L = 2*9 = 1024. Hence. the
new SNR is

So _ 3L 3(1024)?
No  [n(p+1)?  (In256)?

Clearly. the SNR is increased by more than 10 dB.

Equation (6.23) shows that increasing n by one bit increases the SNR by 6 dB. Hence, an increase in the SNR
by 12 dB (from 30 to 42} can be accomplished by increasing n from 10 to 12, that is increasing by 20%. '

{a) Fromn Eq. (6.33)

= 102300 = 50.1 dB

_af _ (m)(64,000) o peas
Amux = ” so that 1= 7 % 800 == = 0.0783
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7*B _ (0.0785)%(3500)

72 2 TR0 W) 112 x 1074
37, (3)(64000) 112 x

(b) No =

(c) Here So = 5‘2—2» = 0.5. and

So 0.5 3
_—= —————— = 4,46 x 10
Mo~ 112 x 10-4 X
(d) For uniform distribution
AN 2 )
So=m(t) = -"?;3 = so that So 0833 2.94 x 10”

No 112x10-4

(e) For on-off signaling with a bit rate 64 kHz, we need a bandwidth of 128 kHz. For a bipolar case. we need a
bandwidth of 64 kHz.

[ |
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Chapter 7
SR

7.2-1  For full width rect pulse p(t) = rect(-i-)

1
P(w) = T,, sinc (%TL)
For polar signaling [see Eq. (7.12))

2
Plo . 1]
Sy(w) = | 73)' = T sinc? (9-2-1)
For on-off case (see Eq. (7.18b)]

s,(m)=|—'°(—“’-)t [1+-21 5 J(w-z—m—)]

47, h T
=ﬂ’- sinc? (?-TL) l+-2-”- i S w__2_q
4 2 T pew U

But sinc? (%Tl’-)=0 for m=2—;m— foralln#0,and =1 for n=0. Hence,
b

= Boging? 2’5.) z
Sy(w)= 4 sine ( 5 +26(w)

For bipolar case [Eq. (7.20b)]

=1 sinc? (%) sin? (227—}’—)
The PSDs of the three cases are shown in Fig. $7.2-1. From these spectra, we find the bandwidths for all

three cases to be R Hz.

The bandwidths for the three cases, when half-width pulses are used, are as follows:

Polar and on-off: 2R, Hz; bipolar: R, Hz.

Clearly, for polar and on-off cases the bandwidth is halved when full-width pulses are used. However, for
the bipolar case, the bandwidth remains unchanged. The pulse shape has only a minor influence in the

bipolar case because the term sin? (%IL) in S, (@) determines its bandwidth.

f
Sﬁ@’)
Polar
-b:%o\a(
e on- 0&

Re F My

Fig. §7.2-1
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7.2-2
[ Te/a Sytw)
g 1 L) L 4
)
1 o0 o 1 1 0
7 'Hjuzr’r =
S e ?'{ w- Tb
(% (k)
Fig. §7.2-2
i+l -2
P(t) = rect A - rect NS
2 2

and
Plo)= —Zé-sinc (%Q) PYLLA N -Iisinc (ﬂ@_) o~ JaTh4

4
(5] ()
Sy(w)= 'P(n)l = T, sinc? (%Z"l) sin?

From Fig. $7.2-2, it is clear that the bandwidth isfrf rad/s or 2R, Hz.
b

(=)

7.2-3  For differential code (Fig. 7.17)

Ro= Jim 307+ 5 (21

To compute R, we observe that there are four possible 2-bit sequences 11, 00, 01, and 10, which are
equally likely. The product aa;. for the first two combinations is 1 and is -1 for the last two
combinations. Hence,
1IN N
R = lim —|—(1)+—(-1)[=0
= im0+ 2]

N—xo

Similarly, we can show that R, =0 n>1 Hence,

5,(0)= l”“”" (2]t (23)

7.2-4  (a) Fig. S7.2-4 shows the duobinary pulse train y{¢) for the sequence 1110001101001010.

(b) To compute Ry, we observe that on the average, half the pulses have a; = 0and the remaining half
have a; =1o0r —1. Hence,

N>
To determine Ry, we need to computea;ay,. There are four possible equally likely sequences of two bits:
11, 10, 01, 00. Since bit 0 is encoded by no pulse{a; = 0), the product of aa;,; = 0 for the last three of

o= Jim, ] e+ 3 0)]-3

these sequences. This means on the average -3-‘? combinations have a;a;.,; = 0and only 1:— combinations

57



have nonzero ag;a;,;. Because of the duobinary rule, the bit sequence 11 can only be encoded by two
consecutive pulses of the same polarity (both positive or both negative).
This means a; anda,,;are 1 and 1 or -1 and ~1 respectively. In either case aza;,; =1. Thus,

these —2—’- combinations have a;a;,) = 1. Therefore,

R = lim %[-’}(1)3%’-(0)]:%

N>

To compute R, in a similar way, we need to observe the product a,a;,. For this we need to observe all

possible combinations of three bits in sequence. There are eight equally likely combinations: 111, 101,
110, 100, 011, 010, 001, and 000. The last six combinations have either the first and/or the last bit 0.

Hence, aza;,; = 0 for all these six combinations. The first two combinations are the only ones which
yield nonzero aiay.,. Using the duobinary rule, the first combination is encoded by three puises of the
same polarity (all positive or negative). Thus a; and a;,, are 1 and 1 or -1 and -1, respectively, yielding
ayag.y =1 Similarly, because of the duobinary rule, the first and the third pulses in the second bit
combination 101 are of opposite polarity yielding aya;,3 =-1. Thu§ on the average, a;a;,; =1 for

% terms,~1 for -]g- terms, and 0 for-s-:—, terms. Hence,

R= dm 50+ F0+F 00

In a similar way we can show that R, =0 »> 1, and from Eq. (7.10c), we obtain

2 2
Sy(w) = !-Pi—;,,;)l—-(l +coswl}) = ’_c(i’_)'_cosz(_@?_)

1110001101001010

Vi) no. . n..n.__.
( fl ) 0

N

Rpfz Re )C Hy—
Fig. §7.24

For half-width pulse P(¢) = rect(2: / T} ).
Ty . 2ol 2 (o
Sy(@) = sinc (—4"-)cos —2-1
From Fig. S7.2-4 we observe that the bandwidth is approximately R, /2 Hz.

7.3-1 FromEq. (7.32)
(1+r)6000 -

4000 =
2

r=

W | -
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7.3-2  Quantization error 5 = A < 0.0Imp = L2100
(a) Because Lis a powerof2, weselect L=128= 27

(b) This requires 7 bit code per sample. Nyquist rate = 2 x 2000 = 4 kHz for each signal. The sampling
rate f, =125x4000 =5 kHZ.
Eight signals require 8 x 5000 = 40,000 samples/sec.
Bitrate = 40,000 x 7 = 280kbits/s. From Eq. (7.32)
(1+r)R, 12x280x10°
br=—= 3

= 168 kHz.

73-3 (8) By =2R, > R, = 15kbits/s.
(b) By =R, = Ry = 3 kbits/s.
() Br= -1%-’- R,. Hence, 3000= '—;3 Ry = R, = 48 kbits/s.

(d) Br = R, = R, = 3 kbitss.
(¢) By =R, = R, =3 kbitshs.

7.3-4 (1) Comparison of P(w) with that in Fig. 7.12 shows that this P(w) does satisfy the Nyquist criterion with

@y =27 x10% and 7 = 1. The excess bandwidth Dy =A% 108,
(b) From Table 3.1, we find

p(t) = sinc? (zx 1061)
From part (a), we have wy = 27 x 10 and Ry =105, Hence, 7} = 1075, Observe that
pnTy)=1 n=0

=0 nz0
Hence P(t) satisfies Eq. (7.36).

(c) the pulse transmission rate is 71‘- =Ry = 10% bits/s.
b
7.3-5 Inthis case %”— = 1MHz. Hence, we can transmit data at a rate Ry = 2 MHz.
Also, By = 12MHz. Hence, from Eq. (7.32)

6 l+r 6
12x10 =—5—(2x10 )=>r=0.2

736 f, =700kHz Also,%i=soomz and f, =700—500 = 200 kHz.
Hence, r =H(?5=OA and f; =%-f, = 500-200 = 300 kHz,

7.3-7  To obtain the inverse transform of P(m), we derive the dual of Eq. (3.35) as follows:

g(t-T) & G(w)e /™ and g(1 + T) & G(w)e/ ™
Hence,
glt+T)+g(t-T) = 2G(w)cosTw )

Now, P(w)in Eq. (7.34a) can be expressed as

1 w 1 (] ]
== —_— 4 =rect] — —_ 2
P(w) Srect 7 b)+2rcc(4 b)co 2Rb) )
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Using Pair 17 (Table 3.1) and Eq,. (1) above, we obtain
P(t) = Rysinc (27 Ryt)+ -Rlsmc [szb[r + E—R:)}' ~b.sinc [szb(t - -2—;—1’)]

= Rb[sinc (27 Ry1) + -%-sinc (27 Ryt + 1)+ Esinc (27 Ryt - II)]
sin(27Ryt) 1sin(27 Ryt + 7). . 1 sin2x Ryt - x)
2Ryt 2 2xRgex 2 2xRyt-nm

sin(2xRyt) 1sin(2xRyt) 1 sin(27 Ryt)
27 Ryt 2 2aRpt+ 2 2xRyt-nx

1 1/2 172 ]

=Ry Sin(ZKRb‘)[z’er‘ - (2;(Rbt + ﬂ) - (2” Ryt - ”)

1
27 Ry1(1-4R,%12)
_2Rycosx Rytsinz Ryt _ Rycosx Ryt
27 Ry(1-4R2)  1-4R

= Ry sin(27 Ryt

sinc (7 Ryt)

7.3‘8 P(w)w-z—co — lrect _a_)__ -jmlzk,,
Ry  \2R, 27R,

) [e Jol2Ry | ~jwli2Ry ]e- Jol2Ry

1
= —-rect
Ry (Zﬂb

1 @ 1 @ -jol2R,
= —rect + ——rect] ———
Ry (2"&} Ry (2”&}

(1) = sinc (x Ryt) +sinc ["’Rb(' _;l_)]

Hence,

b
_sinzRyt sin(z Ryt — 7)
Ryt ARyt -x
LSInAR singRyt  sinwRyt
ARyt xR~z  xRy(1- Ryt)

7.3-9  The Nyquist interval is T, = —;— =T. “The Nyquist samples are p (+n7}) forn=0,1,2, ......
b
From Egq. (7.16), it follows that ‘

20)=p(Ty) =1 and p(xnTp) = 0 for all othern.

Hence, from Eq. (6.10) with T, = T}, andB—Bi--z—T-
b

P(t) = sinc xRy +sinc [,, Rb(’ _}l;_)]

_Sin #Ryt sin aRyt _ sin ARyt
7R, ARyt -n ﬂRbl(l—Rbi)




7.3-10

7.3-10

7.4-1

7.4-2

7.4-3

The Fourier transform of Eq. (1) above yields

ISR (" R T ('3 WS
)=y, "“(2::&)* R, m’(zm)‘ ’

__,_I__rm( o ][ejMIZR,, + e-jmlz&]e-jmnkg

Rb an Rb

2 @ o ~Jjol2Ry
= ~-co§ —— | rec
Ry 2&) {2"&}

(a) No error because the sample values of the same polarities are separated by even number of zeros and
the sample values of opposite polarities are separated by odd number of zeros.

(b) The first sample value is 1 because there is no pulse before this digit. Hence the first digit is 1. The
detected sequence is

11000100110110100

The first sample value is 1, indicating that the transmissions starts with a positive pulse, that is, first digit 1.
The duobinary rule is violated over the digits shown by underbracket.

12000-200-20200-20220-2

Following are possible correct sample values in place of the 4 underbracket values: 220-2,0r20 -2 -2,
or000-2,0r2000. These sample values represent the following 4 digit sequence: 1100, or 1000, or
0100, or 1010. Hence the 4 possible correct digit sequences are

1101001001x,x,x3x,11100
where X;X;X3x, is any of the four possible sequences 1100, 1000, 0100, or 1010.

S =101010100000111
From exampie 7.2

T=(iep’ep’°en’e® D’ @ p'%0 ' ® D12 ep’ep%e.)s

R=(10 D3$D5)T

T =101110001101001
R =101010100000111= S

S = 101010100000111
T=(1®D? eD“eoﬁeoseb‘%p‘zeb“a..)s

>V Y}

>—
R=(1©D?)T (sceFig. §7.4-2) T

T =100010000000110
R=101010100000111=S Fig. §7.4-2

S = 101010100000111
T=(1@ pe p* @ D* eo’en‘eu’eo“eo”)s

R=(1® D® D?)T (sec Fig. $7.4-3)

T=110111101001011
R =101010100000111 = S
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7.5-1

7.6-1

7.6-2

Fig. §7.4-3

From Eq. (7.45), we obtain
c. | 03 -007] 0] [-0328
c i=| 0l 1 03 1{={ 107
< 0002 0.1 1 0} |-0113

(a) —£=5

() Forpolarcase P, =(Q(5)=287x107"
(ii) Foron-offcase P, = 0(5/2)=0.00621
(ili) For bipolar case P, =150(5/2)=0.009315
In the following discussion, we assume A, = A, the pulse amplitude.

(b) Energy of each puise is £, = A2 Ty / 2 and there are R, pulses/second for polar case and -I;—"

pulses/second for on-off and bipolar case. Hencc, the received powers are

0.0015
Prolar = ——fLR,, =L (—-——-)—- 1125x1078
2 2
Fon-off = -'%& X%’”- = 144— =05625x107
2 2
Phipotar =£‘-2-5-x%- —44—=05625x10'6

(c) For on-off case:
We require P(€) = 287x107 = Q(4,/20,). Hence,
Ay 120, =5and A, = 10a,, = 0003

(0003)?

-6
Pogoff = —z— T e " =225x10
For bipolar case:
A
P(€)=287x107 =150(4, /20,)= ;f =5075
Hence
A=A, =5015x20, = 0003045
and
Ao =2 =231x10°6
polar 4
For on-off case:

4
P,=10‘°_<.Q(—‘i-)=> P >475
20, 20,
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on =107 = 4, 2(475(2x107%) = 95x107
For on-off case, half the pulses are zero, and for half-width rectangular pulses, the transmitted power is:

42) 42 (95x1073
s,-=l[ £ ]s £ =( )=2256x10‘6watts.

2 2 4 4
There is an attenuation of 30 dB, or equivalently, & ratio of 1000 during transmission. Therefore
Sr =10008; = 22.56 x 10~ watts

7.6-3  For polar case:

A,) 4
P,=10%= J)::—’=4.75=> Ap=475%107
aﬂ c'l

For polar case with half-width rectangular pulse:

A2 1 n2 -
S; = =—(45x10 =1128 % 107" watts
ENEL

Sr = (10001128 x10%) = 1128 x 1073 wats

For bipolar case:

4 A
P=10% =150 ~2 | —F -4835and 4, =4835x2x107> = 9.67x107>
20, 20,

For bipolar (or duobinary), half the pulses are zero and the receive power S; for half-width rectangular
pulses is

Apz l -32 -6
S-=—-—=—-(9.67x10 ) =2338 x 1076 watts
4 4

(]

Sr = (1000)S; = 2338x 1073 wats

7.7-2  Sampling rate = 2 x 4000 x 125 = 10,000 Hz.
Quantization error = %—’l =0.00Im, = L =1000
Because L is a power of 2, we select L = 1024 = 2% Hence, n=10 bits/sample.
(a) Each 4-ary pulse conveys log, 4 = 2 bits of information. Hence, we ne¢:c112(2 =5 4-ary pulses/sample,
and a total of § x 10,000 = 50,000 4-ary pulses/second. Therefore, the min_imum transmission bandwidth is
5°':°° = 25KkHz.

© By = R"(;+ r) . 30000025) _ )05z

7.7-3  (a) Each 8-ary pulse carries log, 8 = 3 bits of information. Hence, the bandwidth is reduced by a factor of

3. .
(b) The amplitudes of the 8 pulses used in this 8-ary scheme are £ 4/2, £34/2, +54/2,and +74/2.
Consider binary case using pulses £+ A4/2. Let the energy of each of these pulses (of amplitude £ A4/2)

be E;. The power of this binary case is
Rjinary = EpRy

Because the pulse energy is proportional to the square of the amplitude, the energy of a pulse :tL;- is

"255- Hence, the average energy of the 8 pulses in the 8-ary case above is
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E,,[2(:1)2+2( 2)2+2( )2+2(¢%)2]
=21E,

Hence,
By.ary = Egy x pulse rate = 21E) x %b- =7EpRy .

Therefore,
P&-ty =1 ﬁaimry

7.7-1  (a) M =16. Each 16-ary pulse conveys the information of log; 16 = 4 bits. Hence, we need

‘2’:00 = 3000 16-ary pulses/second.
- . . , 3000
Minimum transmission bandwidth = - = 1500Hz.

(b) From Eq. (7.32), we have R, = 1—3; Br. Hence,
3000 = -2587- = Br =1800Hz.

(@) For polar signaling, R, bits/second requires a bandwidth of R, Hz. The half-width rectangular pulse of

7.7-4
. A
amplitude 3 has energy
. 2 2
E b = (.A_) _Tb— = il.
2) 2 8
A

The power Pis givenby P=E R, = —-in ry

(b) The energy of a pulse :t-y— is szb. Hence the average energy of the M-ary pulse is
Ey= -[25,, +2(£3)2 +2(25)7 +....+2[( M -1)) E,,]

M2

= f (2k+1)?
k=0

M2 -1
= E
3 b
i ..—EL— M.ary

Each M-ary pulse conveys the information of log; M bits. Hence we require only logy M
2
pulses/second. The power P, is given by
(MP-1)42 a2

M2-1)R
py - Euls (MR )
logg M 3loga M 24logg M 24logy M

7.7-8  Each sample requires 8 bits (256 = 2') . Hence: 24,000 x 8 = 192,000 bits/sec
BT =30kHz
2 (30,000) = 50,000 M-ary pulses/sec.

2
= e By = e
™" 12

l+r
We have available up to 50,000 M-ary pulses/second to transmit 192,000 bits/sec. Hence, each pulse must

192,000
transmit at least > = 3.84 bits.
SImMit at jcas ( 50 ) 1ts
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7.8-1

7.8-2

7.8-3

=> choose 4 bits/pulse
=> M =16is the smallest acceptable value

-
(8) Baseband polar signal at a rate of 1Mbits/sec PSD ep PSK
and using full width pulses has BW = IMHz . PSK
doubles the B to 2MHz.

(b) FSK can be viewed as a sum of 2 ASK signals.
Each ASK signal BW = 2 MHz. The first ASK signal

occupies a band f.q + 1 MHz, and the second ASK l I _{ ﬁ{k
signal occupies a band f; £1 MHz. Hence, the Lo €y

bandwidth is 2 MHz + 100 kHz =2.1 MHz. e \ookual wwa

Fig.S7.8-1

(a) A baseband polar signal at a rate 1 Mbits/sec using Nyquist criterion pulses at 7 =02 has a
BW=(-‘-;L)R,, -%xlo‘ =60x105Hz.

PSK doubles B# to 1.2 MHz.

(b) Similar to Prob. 7.8-1.

BWisy = 0.6 MHz +0.6 MHz + 100 kHz

BWisy =13 MHz
£ PsD of Fse
loga M =2 for M =4

We need to transmit only 0.5 x 106 4-ary pulses/sec
(a) BW isreduced by a factor of 2.

BWFSK =] MHz N o L
(b) In FSK, there are four center (carrier) frequencies - T 1 “
Jet» fe2» Je3» and £y, each separated by 100 kHz. ¢, a0y &"
Since ASK signal occupies band f, + 0.5 MHz, the total k-_ 300 ki _,'
bandwidth is
05 MHz +0.5 MHz + 100 kHz +100 kHz +100 kHz = 1.3 MHz. +IMuE
Fig. §7.8-3
"y &) .L {, = 2800 rotations /5“_
vt ) ] ¥ Q“;‘ﬁm
R - 3 ety
) — | L\ /

~_-1

—y

Fig. o7.9-1 (@)
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! R
R A

m, ﬁ) >
s ~
’ ; \ Quantizer
{ i 4 SN

\ {C /’ Coder

~
’/‘g S T 4. = 200 romfmséu_
, A& |
Myt \/i ’/r

m4 (.{) 2

m;(4) 5

Fig. (b)
Fig. §7.9-1

Either figure (a) or (b) yields the same result.
my (1) has 8400 samples/sec.

my (1), my(t), my(r) each has 2800 samples/sec.
Hence, there are a total of 16,800 samples/sec.

7.9-2  First, we combine my (), my(t), and my(r) with a commutator speed of 700 rotations/sec. This combined

signal is now multiplexed with m;(r) with a commutator speed of 2800 rotations/sec, yielding the output of
5600 samples/sec.

w.u); ' Commutalin speed
/' ; N 4. = 2200 rdtations
\, > Sec

> - /
/ ~N
[
M \{% ’
melt)|  ~ e ”
Fig. §7.9-2
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7.9-3

£.= Taco
S = éoa .
M€Y Quarlizg ¢ | S RE/S ﬁ 21600 rpe
SNy SER e o T
£.2 2400 [_Ceder
mzk\ K auq.g‘:"bg,“ 21 ék-bys 7 c } X
vfﬂ.wﬂ deder ouffuf‘
m3,‘[€3 q @vmﬂ,?r ﬂ-l'ekbs
Codler :zqekb/s
\\. //
b P
fe~2400 . —
¢t <
m4l) §< Qua.n'l@% _g;ém,rs
@dev’
(a)
ARe rnate arrangement
Yh'l'(\ 64'3&1)/5 '
L 1
R N\
My le 2)¢ kble / Kfc. \ oy
—— - - - ¢ >
/L t\ / \2q ¢ kbls
’ ‘?g\ p,
CWREY e
"".’3‘1'D 2"bw.':! L
e - s = - .
—_—— - - - > |

Fig §7.9-3
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Chapter 8 Exercises

8.1-1 If a plesiochronous network operates from Cesium beam clock which is accurate to + 3 parts

4

in 1012, how long will it take for a DS3 signal transmitted between two networks to become out
of sync if a 1/4 bit length time error results in desynchronization?

Solution: A DS3 bit is transmitted in 1/(44.736-10%) = 2.235336:10" sec. In the worst case,
both network clocks will be out of synchronization by 6 parts in 1012.

2.235336-10%/(6-1012) = 3922.27 sec/bit or 980.57 sec/ Y% bit

8.1-2 For the bit stream 011100101001111011001 draw an AMI waveform.
Solution:

e et

Note that typically, for illustrative purposes, the waveform is given as

8.1-3 For the following waveforms, determine if each is a valid AMI format
for a DS1 signal. If not, explain why not.
a.

Solufion: No. 16 0’s violation

UL e e
Solution: No. bi-polar violation
c.

[ b

Solution: No. 1's density violation
d.

%_W

Solufion: Yes

N g
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8.1-4 a) You have received the following sequence of ESF framing pattern §gguencé bits
..00110010110010110...

Is this a'legitimate framing bit sequence in order to maintain

synchronization between the T1 transmitter and receiver?

Yes No,

If yes, why? If no, why not?

Solution: No. The bit sequence 0011 cannot be in an ESF framing bit sequence.

b) The following T1 AMI signal is received:

Ii 1
Is this an acceptable T1 signal?
Yes No
a. If yes, explain.
b. If no, explain why not (what, if any, DS1 standards are violated) and
draw on the figure the AMI waveform which would be transmitted by the DSU?

Solution: No. 16 O’s violation. The 16 0’s will be replaced by a pattern of 1’s by the
DSU.

8.1-5 The signal 110100600000000000001 is received by the DSU in a T1 data stream which uses a
B8ZS format. Draw the output of the DSU for this signal? The first 1 is already drawn.
Show the bit stream which is substituted by the DSU.

Solution:

N T [} — U]

8.1-6 T-1 synchronization at two distant locations is controlled by separate crystal controlled
oscillators which differ in frequency by 125 parts per million. If the terminal equipment doesn't
maintain sync in how many complete D4 superframes will the faster oscillator have generated (at
most) one more time slot (8-bit) than the slower oscillator ? Circle the correct answer.
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a)s

b) 10

c) 15

d) 20

e) None of the above - if "none", what is the number of D4 superframes before an extra time slot
is generated?

Solution: e) The faster oscillator will generate 125-101.544-10° = 193 bits per second more
than the slower oscillator. This is one frame/sec = 24.125 time slots. Hence, a time slot
difference will be generated in 1/24.125 = 0.04164498 frames or 0.0034704 superframes.

8.1-7 Two plesiochronous digital networks, A and B, utilize Cesium beam clocks accurate to 3
parts in 10" The networks are operated by independent long distance companies and are
synchronized to each other by means of a UTC signal.

a. If a company leases a T1 line with D4 framing which is terminated at one end in
network A and at the other end in network B, how often must the networks be resync’d to
each other to avoid a framing bit error in the customers T1 signal in the worst case? {You
may assume a framing bit error occurs when the two networks are out of sync by 2 1/2 of
aT1 "bit time".}
Solution: A T1 bittimeis 1/(1.544-10°) = 6.47668-107 sec/bit. In the worst case, the
two clocks would be off by 2:3 = 6 parts in 10'® or 6.10""* errored bits per bit transmitted.
Hence, 6.47668-10° sec/bit / 6-10"° errored bits per bit = 1.07945-10° seconds per errored
bit or 5.39723-10° seconds per errored half-bit.

b. UTC operates via GPS satellites which are approximately 23,000 miles above the Earth.
How long, in terms of T1 bits, will a correction signal take to be transmitted to
the network switches? '
Solution: The speed of light is approximately 186000 miles/sec.
23000x2 = 46000miles up and down. 46000/186000 = 0.247 sec
0.247x1544000 = 381850 bits
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Chapter 10
L -

13413 1
52 2
(b) P(black queen) = 1-5‘-'521 =1

10.1-1 () P(red card) =

26
. 12 3
P{picture card) = — = —
4 1
@ P(7)= 55

© P(nSS)-%-%

10.1-2 (a) S=4occursas(1,1,2),(1,2,1),(2,1,1). There are a total 0f6x 6 x 6 =216 outcomes.
1

Hence, P(S=4)=§?—6--;,—2-

(b) S=9occursas(1,2,6), (13,5), (1,4,4),(1,5,3), (1,6,2), (2,1,6), (2,2,5), (2,3,4), (2,4.3), (2,5,2), (2,6,1),
(3,1,5), 3,24), (3,3,3), (3:4,2), (3,5.1). (4,1,4), (4,2,3), (4,3,2), (4,4,1), (5,1.3), (5,2,2),
(5,3.1),(6,1,2), (6,2,1)

25
P(S =9)=-2T6-

(¢) S =150ccurs as (3,6,6), (4,5.6), (4,6,5), (5.4,6), (5,5,5), (5,6,4), (6,3,6), (64,5, (6,5,4), (6,6,3)
10
P(s=10)=2

10.1-3 Note: There is a typo in this problem. The probability that the number appears should be ki not &; .

[
1= Zki=l¢+2k+3k+4k+5k+6k=2lk=k=£—l—
i=1

l
Pli)=— i =1, 29 3’ 4, ’
(i 5 G 5, 6)

10.1-4 We can draw 2 items out of 5 in 20 ways as follows: 0,0,, 0,05, 0,P,, 0,P,, 0,0,, 0,05, 0;P,, 0,P,, 0;0;, 0,0,,
0,P,, 0;P,, P,0,, P,0;, P,0s, P\P;, P,0,, P;0,, P05, P,P;. All these outcomes are equally likely with
probability 1/20.

(i) This event Ey = 0, RU0, A, U0, AU0, U0 AU RUROUR0,UA0UARO0UPO0,UP0
12 3
Hence, P(E})=—= ==
ence, P(E,) %3
(i) ThiseventE, = AR URA

2 1
Hence, P(E;)= %°T

(“i) This event E; = 0‘02 U0|03 U02°| U0203 U030‘ U0302

6 3

H P| B —=—

ence, P(E3)= 26" T0

(iv) This event E, = E, U E3 and both E, & E; are disjoint.
4 2

Hence, P(E4) = P(Ez)'P P(E3) = -1-3 = -g
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10.1-§

10.1-6

10.1-7

10.1-8

Let xg, be the event that the first chip is oscillator andx 5 be the event that the first chip is PLL. Also,
letxo, and x o, represent cvents that the second chip drawn is an oscillator and a PLL, respectively. Then

P(l1 oscand 1 PLL) = P(xol,x,,)+P(xﬁ,xoz)
= P(xol)P("&!"Ol)*P(xﬁ )P(’Oz lxﬂ)
(3 2) (2 3)_3
—X =l ===
5 4 5 4) 5
Using the notation in the solution of Prob. 10.1-5, we find:
3
@ P(*Ozi"ﬂ)’“z

(b) P("Oz Ixol ) = %

(a) Wecan have( ‘8 ) ways of getting two 1’s and eight 0’s in 10 digits

P (two 1’s and eight 0's) = 45(05)’(0.5)" = 45(05)" = 5‘,-’,,- = T(%
(b) P(at least four 0's) = 1-[P(exactly one 0)] +[ P(exactly two 0 s)]+[P(exactly three 0's)]
10 10_ 10 5
P(one ) = 05) =——=—
(one 0) = (*?)03) 1024 s12.
45
P(two 0s) =('9)05)"" = —=
(two0's) =(12)03)" = 72
120
P (three 0’s) =('9)05)!° = ==
(tree 09 = (F)03)" = 72
P(at least four 0's)=l-(—5—-+ 43 + 12°)= 849
512 1024 1024/ 1024

(a) Total ways of drawing 6 balls out of 49 are

0). B
(%)= 5775 = 13983816

. 1
H S S
ence, Prob(matching all 6 numbers) T
(b) To match exactly 5 number means we pick 5 of the chosen 6 numbers and the last number can be
picked from the remaining 43 numbers. We can choose 5 numbers of our 6 in( 2) = 6 ways and can choose

one number out of 43 in( 413 ) = 43 ways. Hence, we have 43 x 6 combinations in which exactly 5 numbers

match. Thus,
43%x6

13983816
(¢) To match exactly 4 numbers means we pick 4 out of the chosen 6 number in( 2) = 15 ways and choose

P (matching exactly 5 numbers)= =1845x1073

2 out of the remaining 43 numbers in( ‘23) =903 ways. Thus there are 15x 903 ways of picking exactly 4

numbers out of 6 and
P (matching exactly 4 numbers) = 15x903 _ 9686x107*
13983816
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(d) Similarly, we can pick three numbers exactly in (3)(‘33) =20x 12341 = 246820 ways. Hence,

246820

= 001765
13983816 0

P (matching exactly 3 numbers)=

10.1-9 (&) Let f represent the system failure. Then
P(f)=(1-001)'" = 090438
P(f)=1- P(f)=00956
() P(f)=099and P(f)=001

If the probability of failure of a subsystem s; is p, then
P(f)=(1- p)" or 099 = (1 - )" = P = 00010045

10.1-10 If / represents the system failure and £, and f; represent the failure of the upper and the lower paths,
respectively, in the system, then:

® P = PUfufe) = PP = [P
P(f,)=1-P(f,)=1-(1-001)'" = 0.0956
and
P(f) =(0.0956)* = 0.009143

Reliability is P(f) = 1- P(f) = 09908
(b) P(f)=0999

P(f)=1-0999 = 0001

P(f,) = 0.001 = 00316

P(f,)=(1- P)*° =1-00316 = P = 0.003206

10.1-11 Let P be the probability of failure of a subsystem (s or s, ).

For the system in Fig. a:
The system fails if the upper and lower branches fail simultaneously. The probability of any branch not

failing is
(1-P)(1-P)=(1- P)2 . Hence, the probability of any branch failing is1-(1- P)z.
Clearly, P, , the probability of the system failure is P, = [l -(1- P)’Il -(1- P)’] z4P? Pe<l

For the system in Fig. b:
We may consider this system as a cascade of two subsystems x; and x, , where x, is the paraliel combination

of s; and s;and x, is the parallel combination of s, and s;. Let Py(x;) be the probability of failure of x, .
Then ‘
Py(xy) = Py(x;) = P?
The system functions if neither x| nor x, fails. Hence, the probability of system not failing
is(1- P?)(1- P?). Therefore, the probability of system failing is
Pr=1-(1-P})1- P2)=2P2 - P4 22P? P<«<1
Hence the system in Fig. a has twice the probability of failure of the system in Fig. b.
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10.1-12 There are(°} ) = 2598960 ways of getting 5 cards out of 52 cards. Number of ways of drawing 5 cards of

the same suit (of 13 cards) is( '3 ) = 1287. There are 4 suits. Hence there are 4 x 1287 ways of getting a

flush. Therefore,
4x1287

2598960

P(flush) = =19808x1073

10.1-13 Sum of 4 can be obtained as (1,3), (2,2) and (3,1). The two dice outcomes are independent. Letx, be the
outcome of the regular die and x, be the outcome of irregular die.

1 1 1
Paey(13) = By ()P (3) = 1% 3= o

Py (22) = Py (2)P, (2) = £ x0=0

1 1 1
lexz (3,1) = l"“| (3)]"“:2 (]) = z X g = 3—6

111
Therefore P,(4) = — + =L
erefore (4)= 5+ 5= 12
Similarly,
P(5)="P., (18)+ P,

(23)+ P, (32)+ £, (41)

(ot 152

r .1 11 1 1 1

e X X =t e XVt =K==

6 6 3 6 6 6 12

10.1-14 B= AB{ A°B

P(B) = P(4)P(B|4)+ P(4°)P(84°)

~(ae)er) (&)
P(4B) _ (EIEX%) L

P(B) 1 s
26

P(4|B) =

10.1-15 (a) Two 1’s and three 0's in a sequence of § digits can occur m(g) = 10ways. The probability one such

sequence is
P=(08)%(02)* = 000512
Since the event can occur in 10 ways, its probability is
10x 000512 = 0.0512

(b) Three 1's occur with probability (3 )(08)*(02)* = 02048
Four 1s occur with probability (§ {08)*(02)" = 0.4096

Five 1's occur with probability ($)(08)°(02)° = 03277

Hence, the probability of at least three 1’s occuring is
P =02048 + 04096 + 03277 = 09421

10.1-16 Prob(no more than 3 error)= P{no error) + P(1 eror) + P(2 error) + P(3 error)
=(1-R) 0 +(1®)R (- )7 + ()220~ RV +(10)R20- R)”

=(1-100P,)+1002,(1-99P7,) +4950P,2(1-98P,) + 161700 P,3(1-97P,)
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10.1-17 Error can occur in 10 ways. Consider case of error over the first link
P.(correct detection over every link) =(1- A)(1- BA)...(1- Pq)
Pg =1-F. =1-(1- R)Y1- B)...(1- R)
= 1-[1 ~(A + R +..+Rg) + higher order texms]
=R+RA+.+hy P <<l

10.1-18 P(e)= Z( B/ (1- Y =10P3(1- B,)? +5P,4(1- R.)+ P}
Jj=3

=10P3(1-R)}, P <«<I

10119 (2) P(success in 1 trial) = 116 -0l
(b) P(success in 5 trials) = 1~ P(failure in all S trials)
=1-Pg, Py, Py, Py, Py,
Py, = Prob(failure in 1" trial) = 9/10
Py, =Prob(failure in 2* trial)=8/9
Similarly, Py, =7/8, P;, =6/7, and Py, = 5/6

Hence, P(success in  trials) = 1 - ( I X X I ):1-_-

10.1-20 Let x be the event of drawing the short straw and the 7;(x) denote the event that ith person in the sequence
draws the short straw. '
Now, R(x)=
Py (x) = Prob(1® person does not draw the short straw) x Prob(2™ person draws the short straw)

= [1 A(x ]— = (IOX;) = 0.1
Similarly,

Py(x) = Prob(neither 1* nor 2™ person draws the short straw) x Prob(3" person draws the short straw)

1 8Y1
=[1- Alx)- A(x)g = (EXE) =0l
Similarly, P4(X) = Ps(x) == ﬁo(x) =01
10.1-21 All digits are generated independently
(2) P(all 10 digits are 0) = (03)"°
(b) There are('g) ways of arranging eight 1°s and two 0°’s. Hence,
P(eight 1's and two 0's)=('9)(07)*(03)?

(c) P(at least five 0’s) = P(five 0’s)+P(six 0’s)+...+P(ten 0’s)
=("2)0.7)°(03)° +("X0.9)* (03)° + (*9)07)*(03)" + (' }0.7)* (03 +('8)07)03)° +(03)'°

10.2-1  B(0) = Py (1,0)+ By (0,0) = A (1) Py, (011) + . (0) 7y, (0l0)
= 06x01+04[1- B, (10)] = 006.+032= 038
P,(1)=1- P, (0) =062
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10.2-2

10.2-3

10.24

P(L)A(1)  (1-p)Q
@ Py (11)= P(1)  (1-Q)R+(1-R)Q

M A xly(oll) =1-F x}y(lll)
(note that P, (1) and P,(0)are derived in Example 10.10)

Y A R
() P(le)-Irzxe dx p

(b) Prob(~-1<xs2)= fl—--;—xe’dx +I:-;-xe"‘dx = l';l;-;%i'
3

2 1
Prob $-2)= - xdx:———
(c) Prob(x <-2) j; 2xe ™

ACH)
P (%) ot Y @ AC)

10.2-5

10.2-6

o] x-> o| Yy— o Y-
Fig. S10.2-4

Since this is a half-wave rectifier, y assumes only positive values. So P(y <0) = 0.

Hence, F,(y) =0 (fory < 0) and P(y < 0*) = % Hence, F,(O*') =%

x is a gaussian r.v. with mean 4 and oy = 3

Hence,

@ P(xz4)= Q(“—;i) - 0(0) =05
) P(x2 0) = 49-%5)= 1—4-;-) =1-009176 = 0.9083

(© P(x2-2)= Q(Lz;'-‘i) = 1-Q(2) = 1-002275 = 09773

Fig. $10.2-5

(=) From the sketch it is obvious that x is not gaussian. However, it is a unilateral (rectified) version of
Gaussian PDF. Hence, we can use the expression of Gaussian r.v. with a multiplier of 2.
For a gaussian r.v.

1 -xn

py(»)= il
|

(b) Hence, (i) P(x21)=2P(y21)= 29(%) = 08026 ST g (x)

with oy =4

(i) P(1<xs2)=2P(1<ys2) =2[QG)-QG)}= 01856

(c) If we take a Gaussian random variable y
2
py(¥)= le':e-y 32 Fig. §10.2-6
and rectify y (all negative of y multipled by —1), the resulting variable is the desired random variable x.

o
N
v
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10.2-7

10.2-8

10.2-9

The volume V under py (x,y) must be unity.
1 A
Va—(Ixl)A=Z=1, 4=2
2( x1) >
Px(x)= [ Pry(x.9)y

But y = —x + 1 and the limits on y are 0 to 1 - x . Therefore,

. l-x 2(1~x) 0sx<4
Pl(x)=f 2dy=2 )"

0 otherwise
2(1-y) 0sys)

Similarly,  py(y)=
0 otherwise

. Uiy Osysi
Pyy(sly) = p’:((y)y ) 2(12 ) { . Fig. $10.2.7

l-x 0<x<1
Similarly, pyy (¥x) =
0 otherwise

Clearly x and y are not independent.

E P )

Pxy(x,y)=xye

x‘+ -x?
® 9= Pty - xe i)
Similarly, P,(y)=ye P i2yy)
ny(xsy) = xe—x2/2"(x)

Px(xly = )’) = ——y-(-T'

and py(yx=x)= p,:x((x )y ) -y ugy)

(b) From results in (a), it is obvious that x and y are independent.

Px (x) = I:o pxy(x, y)dy = ;lxi I:o e-(axzq-byz-z:xy) /2M &

| oM )M 1 2
v v O &= e 26
-y

Similarly we can show that p, (y) = 7-1-=e
2ma

Therefore Py (xly) = Pxy(x.y) J— a(x--y

Px(x)

p y) J’_‘ {"”’

7



.2 2
10210 K[° [ ¢ (422> )M.—.xj:e"’[j:e'yz‘*yay]dx=1
o _y2. x2/4 © -3x%/4 ’4”
But Lne Y-y = Jre* ' and, KJ;]_Qe dt=K\/;( ?)=l

Hence, K = —I-J'—BT
A K

azpey? - 2 3 ’3 32
Px(x)=KI_:e.( g )dﬁ’= Ke x2f;e Y0y = KJ;e E L 4—’;e /4

, 2
Because of symmetry of p,, (x,y) with respectto xandy. py(y)= ‘_3; -3y°/4
20l
by ) = 2222 L)
W 0) Vr
and

32 2
p,y(x,y) 1 e-[? oy ]

Pyeloby) = () Jr

Since pyy (*,¥) # px(x)py(¥), x and y are not independent.

10.2-11 P, = P(f1)P,(1)+ P(£0)P,(0)
If the optimum threshold isa, then

e e

2
a, _1 [e’("p“’) 12ay? P(1)- e‘("r"") 120 P (o)] Fig. $10.2-11

_ 2 2 _ 2
Hence, e_<" a) 12w P(1)=e (4p+a) 120, P,(0)

On_ (0)
And a= - ln[ > (l)]

~(x-2)*ns

10.3-1 -i=2, Ty =3, Px(1)=;lT'e
n
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1032 p,(x)= -21-|x|e““
Because of even symmetry of p,(x), X =0and .
b, (2

=[xl Td=31=6
0 x>
Fig. §10.3-2

x2=a,2+i2=ai=3!=6

e'yzlz’zu(y). Therefore
y- f:ypy(y)dy#:-;-y&(y)dy F—T-ye
sl -,
;TZ;J-“"W dy 03990

y-2=f;y2p,(y)dy= I:%yza(y)ay*"[:';#e—yzﬂazdy

® 2—,\'2/2«2 gg_z_
:I-ZZI 4 2

Oyz - yz —('9)2 = %_ _(0.3995»)2 = 034080

1 1
-y 120? &

1 2 2
1034 o2 =[ x2p, () =2 x? ———e™* P = 2x =,
X IO px(x) IO x avor x 2

2
c__ 1 (o _x¥m 8 T2 o2 ( )
Because X = xe ¥ dx = x2=02-(X)"=2—- =
27w b e S v B

The area of the triangle must be 1. Hence K = % and p,(x)= %(x +1)

-1€x<3

10.3-5
3 1J.4 1y3y2‘164165
X = é:— -l I ] ——— — = ww | e — — ]~
%= [ 3pu(x)ax = g oty - )y sl 3 2 8(3 2) 3
3
2 1.3, ifx* X*
- +l)dr == =4~
X s-[-f(’ ) 8(4+3 ,
1[81 27 1 1] 11
Lot Bt et ol bR
8l4 3 4 3] 3
n__8 Fig. $10.3-5

10.3-6 x-zgx,P (x,)—-——(2)+—(3)+——(4)+ (5)+ 6)+ (7)+
2 )+ 3O+ (10)+ (1) +5 (12)_3-52_7
= &, 1 2 3 6
xt =3 x P,(x,)=-3-6(4)+§-g(9)+33(16)+§3(2s)+§(36)+-3-3(49)+

=2
5 4 3 2 1.

— — —_— — —(144) =
(64)+36(81)+36(1oo)+36(121)+36( )=5483
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—715=j e 2% 3 Forn odd, the integrand is an odd function of x. Therefore x" =0,
oxV2r

For n even, we find from tables

— | 0oYs){n-)e2  n even
X =

10.3-7 x" =

0 n  odd

10.3-8 Letx; be the outcomes of the ith die. Then,

i,-=l+2+3+4+5+6=1 i=1,2,...,10
6 2
2
5 12422432:42:5246° 91
X; = = ——
6 6
"2 =2 35
dﬁﬁ‘m)=‘

12
If x is a RV representing the sum, then

X = il +-X’2+...+ilo = l{%) =35

2_.2 .2 2 _qof33)_175
Ox =0y +0y t 40y = 10(12)- 5
) +x2 113

x=¢2+ --—-+(35) =1254.167

1041 p,(x)= %6(x) +15(x-3)

; / S— 'l
1 _p2 e 1 e~
palr)= e S |

o 3 y
y=x+n
Py(y)= px(x)* pa(n) = [ J(x)+-6(x 3)} T———e'" L Fig. S10.4-1
=2 _[ (x)[ g% /8}, 1% s(x- 3)[ ’("’)2"}:1:
=4j§e_y /s+m,-(y—3)2/s
10.4-2 Px(x) =045(x)+065(x - 3)
Pa(n) = ﬁ;e'"z' *
and
py(y)=g'27e —07;; -3 | | Fig. 510.4-2

104-3  p,(x)=Q8(x-1)+(1-Q)8(x+1), pp(n) = P&(n-1)+(1-Q)é(n+1)
Py(»)=[08(y-1)+(1- Q)8(y +1)]*[ PE(y - 1) +(1- P)&(y +1)]
=(P+ Q—ZPQ)&(y)+ PQ&(y—2)+(l- P)(I-Q)é'(y+2)
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10.4-4

10.5-1

10.5-2

10.5-3

10.6-1

p2(2) = Px (x) * Py (»
Taking Fourier transform of both sides, we have

I’,‘(m)se"'?“”zz'j‘”g
P(w)= Px(“’)‘ Py(w)

ol
P (@)=e o3’ - jof

- e-(ﬂi +ol)o? L)
Taking inverse Fourier transform we get
1 Artenfrfeled))

;;Zz(ax + ay)

Itisclearthat Z=X+Yando}=0l+0}

p.2)=

AR o 2.2
For any reala, [a(x -%)-(y-¥)] 20,0r a’o% + ay -2a0,, 20. Hence, the discriminant of this
quadratic in a must be nonpositive, that is:
<lorgc=l
—Ia,a, ¥
Wheny = K|x+ K5 Hence, y=K|X+K)

a'§ = k2ol and Oxy = (x-X)(y-¥)= (x-X)(K\x+ Ky = K|X-K) = Kio2. Hence,

4cr,‘y -4axay <0, thatis,

Oxy
Pxy = ono, = K,crx/ chr,‘ =1if K, is positive. If K, is negative, 05, = K,a, is negative.

Buto, and oy are both positive. Hence, p,y = ~1

%= jz”cosap(o)dh—'- [" cosodo=0 similarly, 7=0

Oy =Xy =cosfsinf = 5sm20 = —jo sin26 p(6)d6 = —-—j sin26d6 =0

Hence, o,y =Xy =0 and x, y are uncorrelated. But x2 + y =L
Hence, x and y are not independent.

In this case

Riy =Ry =Ry =m} = P,

Ri3 = Ry; = Ry3 = Ry; = Ry, = 0825F,

Ry3 = R3) = Ry = 0562 P,

Rg3 = 03085,

Substituting these values in Eq. (10.86) yields: a; = 11025, a; = -02883, a3 =-0.0779
From Eq. (10.87), we obtain

=(1-(0825a; +0562a; +030843)| P, =02753F,,

Hence, the SNR improvement is
10lo T =563 dB.
02753P,
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Chapter 11

11.1-1 This is clearly a non-stationary process. For example, :
amplitudes of all sample functions are zero at same i
instants (one is shown with a dotted lin¢). Hence, the /N /\

statistics clearly depend on. N4 S t\ —
M
¢t

’\/\/t-,

Fig. S11.1-1

11.1-2  Ensemble statistics varies with ¢. This can be seen by _W‘
finding 2 B
x(1) = Acos(ax+¢9)= A J:oocos(ax-ro)p(w)dw q Q 0 Q Q AWA
A -

cos(ax +68)dw . This is a function of 1.

100 ._/\ Z
Hence, the process is non-stationary, -
T =
Fig. S11.1-2

11.1-3 This is clearly a non-stationary process since its
statistics depend on ¢. For example, atf = 0, the
amplitudes of all sample functions is 4. This is not 0 t»

the case at other vaiues of ¢,
-
—\—£><~° -
-— o{ <>

Fig. S11.1-3
11.1-4  x(r) = acos{axr +6) .
;(-:—)=acos(ax+0)=;cos(ax+8)=cos(ax+8) I_AAap.(a)da o 255 Pa(a.')
- +6)124) [* ada=0
roder 024l = =A | A axs
Ry(11,17) = a2 cos{ar, + 8)cos{ar, +6) = cos{ax, + 6)cos(ax; +O)a’
= cos{ax; + §)cos(ax, +0)j p 2: Fig. S11.1-4

ai‘s-cos(ax, +8)cos{ar, +6)
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11.1-5

x(1) = acos(ax +6) = j;oocos(ax +8)p(0) do

a_ 100 a__.
=000 cos(ax+0)dw=msm(ax+a)l

100

0

= = [sin(1001 + 6) - sin]

Using this result, we obtain c

11.1-6

1117

11.1-8

2
Re(t1,12) = a* cos{ax, + B)cos{ax, + 6) = gz—cos[a;(t, +1;)+26+cosat) ~12)

=__-——200(‘:l2“2)[sin[1oo(:,+:2)+2a]-sinzoj+2 o0, _2)[sm100(t|—12)]

;c—(-;s=al+b=;t+b. But a=0 Hence, ;(-;Ssb

- - a3l2
=0, a2 =[2a? 4
Also, a=0, 3" =[',a p(a)das—-?_zg.i

Ry(t),1) = (ar, +b)(at +b) = 8%yt +a(tyb+12b) + b2

= azt,tz +ab(1) +¢2)+b = %r,t; +b?

pPCRK)
®) x()=K=0 K-> l
() o 1 K, EF
v _wl. [ ¥2? Lpet 2, 1 - —
Re(n)=KK=K*=[ K p(K)iKsij_{( dK =3 - T —>
(d) The process is W.S.S. Since;cm =0and Ry(1),13) = % = ) e —
(e) The process is not ergodic since the time mean of each "
sample function is different from that of the other and it is 3
not equal to the ensemble mean (; = 0) o € —
-_— W, o
® *=Ro=3 4 :
— 5 b-‘:
Fig. S11.1-7
F Py
x(¢) = acos(w, 1 +6) y— \ > AT
- =2 1 S T Ay .
a=0 a’=3 __'/\ N\ /\‘
A A N~

() x{t)=acos{w +6)=a cos(wt +6) =0
(©) Rx(t],fz) = ;5 cos(wct, +0)COS(0)‘12 +0)

1 SVANVAN
{coswc(q ~t)+codw.(n +tz)+29]} \/ \/ \/ t-

1 2
cosa.(ty —12)+5-;Jo co{mc(t, -rz)+20}18

Wi— W= w

/-\ //\ .
cosa),_.(t, - 12)

(d) The process is W.S.S. Fig. S11.1-8
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(¢) The process is not ergodic. Time means of each sample function is different and is not equal to the
ensemble mean.

-3 1
® x*= Ry(0) =
11.2-1 (a), (d), and (e) are valid PSDs. Others are not valid PSDs. PSD is always a real, non-negative and even
function of . Processes in (b), (c), (f), and (g) violate these conditions.
11.2-2 () Letx(t) =x, and x(t+7)=x, Then,
(Xl t Xz)z = X|2 +X22 +2X1x2 20, X|2 4')(22 21 2x1x
But, X,x; = R,(r)and x,% =x,? = R,(0) Hence, R,(0)2|Ry(r)]
®) R(r)=x()x(r+7), lim Ry (z)= lim x(r)x(¢+7)
T-pD F->0

As 1, x(t) and x(t + 7) become independent, so lim R,(r) = x(1)x(s + 7) = (XXX) = x?
b0

1123 R, (r)=0 forr= :ti% and its Fourier transform S, (w) is bandlimited to B Hz. Hence, R,(7)isa
waveform bandlimited to B Hz and according to Eq. 6.10b
R (7)= Z R ( )smc (2#Bt -n). Since R,‘( ) 0 for all n exceptn = 0.

n=-o

Ry(t) = R,(0) sinc (27Br) and S, (w) = "( ) rect( ) Hence, x(1) is a white process bandlimited

4B
to B Hz.

11244 Ry(r) = Pyx, (1, 1)+ Poyxy (=1=1) = Py, (=1, 1) = Pyx, (1-1)
But because of symmetry of 1 and 0,
Py x, tn= Py x, (-1,-1) and Py xy (=1, 1)= lexz(l"l)

40 By () =2 Ry (1, 1= P ()] —— —
"2le ])[ 2'!, lll) 2|x|( lll)] ;:;rl_l;::‘:b:lq’_.n‘rb—;

=2R, (1)[ xalki (1]1)-(1— Pk, (1|1))] =2P 1, (h)-1

Consider the case nT}, <|r] <(n+1)7} . In this case, there are at least nnodes and a possibility of (n+1)

" nodes Prob{(n+ 1)nodes] = L-EIL = -i_--n
h b

Prob(n nodes) = | - Prob{(n + 1)nodes) = (n+1) - =
L .
The event(x = Ijx; = 1) can occur if there are N nodes and no state change at any node or state change at

only 2 nodes or state change at only 4 nodes, etc.
Hence, Py, (1) = Probf(n + 1)nodes] Probstate change at even number of nodes)  +

Prob(n nodes) Prob(State changes at eveen number of nodes)

The number of ways in which changes at X nodes out of N nodes occur 1s( x) Hence,

Peyi (1) =[(3°')06)° (04" + (3062 (04)" .. (ﬂ-,.J+
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[( )06)°(04)" +(5)(06)*(0.4)" 2 +.... ] (n-o»l-%'-)
and Ry (r) = 2Px||x2 (I1)-1 This yields

Re(r)=1-1241 H<h  (n=0)
= -0.44+0.24-ij- T, <l <27, (n=1)

=0136- oo«;"l 2% < <3, (n=2)

and so on.

1 Ret®)
T, 3T
N fea Y7 an,

dr,
r2 4T
. 024
-0. 24 mo.048
-hd
dz
dt*
B .
0-9576 " T Tl Hh 00506
> ] L 3
v Y
-O.”‘ -..1‘.

-2.¥ v

Fig. S11.2-4

The PSD can be found by differentiating R, (r) twice. The second derivative d2R, / dr? is a sequence of
impulses as shown in Fig. S11.2-4. From the time-differentiation property,
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11.2-8

11.2-6

2
—dd—z Ry(7) & (jo)? S, (@) = 025, (@) Hence, recalling that 5(r - T) & e/, we have
T
~0?5,(w) = Tl[—z.a +144(e1T +¢7/9% ) - 0288(e/20% + ¢~/2Th )+]
b

= —Tl—[-2.4 +288cosT} - 0576cos2wT; +0.1152c0s 30T, +....]
b
and

1
Sy(@) = ;;;2—[2.4 - 2.88(cosw7’b -%cosZaﬂj, + 215 cos3m7}, - l—zl—s-cos4a)1;,+ )]

Because Sy, (@) is a white process bandlimited to B, Ry (7) = Ry(0) sinc (2Br) and
n

Roi—1=0, n=4%], 8

m(”) 0, n=4%1, £2, +3

This shows that x(t)x(t + 2—"5) = Rm(-z%) =0

Thus, all Nyquist sample are uncorrelated. Now, from Eq. 11.29,

(@)= IP(m)I {Ro + Z Rp cosm»oﬂ,]

Ry=23,3;,,=0 n 21 and wherea, is the kzh Nyquist sample.

RO = a—%- = ;-2- = Rm(O) HenCC,

5= 228 500 - 280}t sice -

For duobinary :
A, (1)= P, (-1)=025 and P, (0)=05

— 1 1. (1
ay =(|)Z+(—l)-4-+({-i)=0
1 1 1
Ro=ad =0 (-7 34033

Ri=ayayy =3 3 84851 Payey,, (858k01)
Ak Gk4y
Because a; anda;.,| each can take 3 values (0, 1, -1), the double sum on the right-hand side of the above
equation has 9 terms out of which only 4 are nonzero. Thus,
Ry = (1X1)Plklh.l (1’1) + (‘lx_l)?lhlh,‘ ('1)("1) + (l)(—l)Plglkq (1)(’1) -(-l)(l)Plklk,.] (-l)(l)
Because of duobinary rule, the neighboring pulses must have the same polarities. Hence,
1

Rt (4= B (02, () =3 (1) -4

Similarly, P,k.m(-l,—l)=% Hence, R, =%

Also Rz = 838542
In this case, we have the same four terms as before, buta; anda,,; are the pulse strengths separated by one
time slot. Hence, by duobinary rule,

Pl‘lhz (l'l) (l) k+2|‘k ("l) (:) = Tlg

Similarly, A4, , (-1~ l)’ﬁ
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In a similar way, we can show that £, o, , (1=1) = Py,a,,,(-11) = -l%

Hence, Ry =0
Using a similar procedure, we can show that R, = 0 for n22. Thus, from Eq. (11.29) and noting that R, is

2 2 «

Plo 7, p

an even function of n, we obtain S, (@) = I-P—(-a—’)l-[—l-(l +cosaT, )] = L(—-)Lt:os2 [2—") ‘
L, L2 T 2

T; T,

For half-width rectangular pulse P(w) = —gﬁ-sinc (9—4&) and S, (w) = —7;.”-sim:2(%i)cos2 (%)

112-7 8, =(1)@+(-1)(1-Q)=20-1
Ro =1} = (1)’ Q+(-1)*(1-0)=1
Because all digits are independent,
Ry =838ge; = 84840 =(20-1)° Hence,

2 @®
Sy (@)= ﬁ;bi[l +2(20- 1)2(2 cosnaT} )]

11.2-8 Approximate impulses by rectangular pulses each of height » and width ¢ such thathe=1and ¢ - 0 i
(Fig. S11.2-8a)

Ry(7)= XX x1x3 P 5, (11%2)
xx i
Since x; and x; can take only two values / and 0, there will only be 4 terms in the summation, out of which

only one is nonzero (cosresponding tox; = b, x5 = h). Hence,

Re(7) = b Py x, (b, ) = h Py (R)P, o ()

Since there are @ pulses/second, pulses occupy ar fraction of time. Hence,
2

le (h) =ar and Rx(’) =h aEszlxl (hlh) = ahpxz |x; (Mh)

Now, consider the range|rj < £. P, |, () is the e

Prob(x, ) = h, given thatx; = h. This means x; lies on one {;m i l l l H n

of the impulses. Mark off an interval of r from the edge of "N W | | B S
this impulse (see fig. S11.2-8b). If x, lies in the hatched <-

interval, x, falls on the same pulse.
Hence,

Prgfn, (h) = Prob{x, lieinmeha:ehedregion)..‘..;_’.=1-£ €T

and Rx(r)=a.h(l——:-) E

Since R,(r) is an even function of 7, Ry (r)= ai{ - 1:[7)

a

In the limitas £ = 0, R,(r)becomes an impulse of strength c. Rx(T) @

Ry(r)=ad(r) |d=0.
When 7 > ¢, x; and X, become independent. Hence,
P o T->

Pl (Hh) = Py, (h) = as
Ry(r)=a’he=a? = >0
Hence, R,(7) = ad(t) +a? Fig. S11.2-8




11.2-9 In this case the autocorrelation function at r = 0 remain same as in Prob 11.2-8. But for r > 0 whenever
x{t), x{t + £) are both nonzero, the product x(t)x(z + 7} is equally likely to be h* and - h%. Hence,
Ry(7)=0, 7#0and R (r)=ad(7)

11.2-10 The process in this problem represents the model for the thermal noise in conductors. A typical sample

function of this process is shown in Fig. S11.2-10. The signal x(¢) changes abruptly in amplitude at random

instants. The average number of changes or shifts in amplitudes are 8 per second, and the number of
changes are Poisson-distributed. The amplitude after a shift is independent of the amplitude prior to the
shift. The first-order probability density of the process is p(x;1). It can be shown that this process is

stationary of order 2. Hence, p{x;)can be expressed as p(x). We have

R ()= [, [0 2122 Py, (%1, %2 )by

at a0
= [ [ ximapy, (31)pay (x2]%1 = 3y iy M)
To calculate py, (x| = x,), we observe that in r seconds (interval between x, and X, ), there are two
mutually exclusive possibilities; either there may be no amplitude shift(x, = x; ), or there may be an
amplitude shift(x; # x;). We can therefore express py, (x2[x| = x,) as
Px, (%2]%1 = 1) = s, (¥2]x; = x1, no amplitude shift) P(no amplitude shift) +
Px, (%2]x) = x;, amplitude shift) P(amplitude shift)

t t+T
o I 1] Jl—' r—s
- — T
"' "2 Fig, §11.2-10

The number of amplitude shifts are given to have Poisson distribution. The probability of k shifts
in r seconds is given by

k ,
A= (ﬂ:!) b

where there are on the average f shifts per second. The probability of no shifts is obviously py(r) , where
polr)=e?
The probability of amplitude shift= 1- py(r) = 1-e~#7 . Hence

Pxy(%alxy =x1) = eh Px, (%2%) = %, no amplitude shift)+ (l - e"") Px, (¥2[x) = x;, amplitude shift)
' @
when there is no shift, x, = x, and the probability density of x, is concentrated at the single value x;.
This is obviously an impulse located atx; = x;. Thus,
Px, (x2/%1 = x), no amplitude shift) = &(x; - x;) 3)

whenever there are one or more shifts involved, in general, x5 # x;. Moreover, we are given that the
amplitudes before and after a shift are independent. Hence,

Px, (%2[x1 = x;, amplitude shift) = py, (x2) = p(x) 0]

89



where py, (x3) is the first-order probability density of the process. This is obviously p(x). Substituting
Egs. (3) and (4) in Eq. (2), we get
Pxy (x2lx1 = x1) = € P 8(x - x1) +(1- €77 ) py, (x2)

= e'p’[J xy-x))+ (e - l)p,(2 (x2 ]

Substituting this equation in Eq. (1), we get

Rx(f) - e‘ﬁ'!:!:x|x2p,q (x,)[&(x; - xl) +(ep' - l)pxz (xZ )P‘lde
= A [ [ rmap, ot - s [ [, (e, o)y ey |
= P [t e+ (e 1)y e [ g )

=[x (e )2 |

where X and x> are the mean and the mean-square value of the process. For a thermal noise X =0 and
Eqg. (5) becomes

)]

Ry(r)=x2e7#" >0
Since autocorrelation is an even function of r, we have
R(r)= x2e A
and

2px?
Sx(@) = ﬂz P

11.3-1 For any real numbera, (ax-y)* 20
azx2 +y -2axy 20
Therefore the discriminant of the quadratic in a must be non-positive. .Hence,
(2x)" <ax?-y? or ()" <x2y2
Now, identify x with x(¢;) and y with y( ), and the result follows.

1132 Ry(7) = ut)u(t + ) = [x(t) + () x(t + £) + y(t + 7)]
= Ry (r) + Ry(7) + Ry (1) + Ryx (v) = Ru(2) + By ()
since x(r) and y() are independent.
Ry(7)=[2x(r)+ 3y(t)12x(t +7)+3y(t+ r)]
=4R,(7)+9Ry(r) since Ry (1) = Ryx(7)=0
Ryy () = [x(1) + y(e)[2x(¢ + 7) + 3y{t + 1)) = 2Rs () + 3Ry (7)
Ryy(7) = Ryy(~17) = 2Ry (7) + 3Ry (1)

113-3 Ry (r) = ABcos(wt + §)cogna(t +7) + ng)

= -%B-{co{mot +nwg(t+1)+(n+ l)¢] + cos[nmo(t +7)-wgt +(n- 1)¢]}



11.3-4

11.4-1

cofwot +nwg(t +7)+(n+1)g]= E!;J'oz " cof ot + naxg(t +’¢') +(n+1)gldg =0

Similarly, conwo(t + r) - wgt + (n- 1)$]=0 and Ry (r)=0

x(t) = C, + Y. C, cosnag(t - b)+6,

n=|

@®©
=C,+ 3 Cp(nwot - nwgb +6,)
n=l
Since b is a r.v. uniformly distributed in the range (0, 7;,), wgb = -2;-2 is a r.v. uniformly distributed in the
b

range (0, 27).
Using the argument in problem 11.3-3, we observe that all harmonics are incoherent. Hence the
autocorrelation function of R, (7) is the sum of autocorrelation function of each term. Hence follows the

result.

(@) S)(w)=2KTR, and S,(w) =2KTR,
Since the two sources are incoherent, the principle of superposition applies to the PSD.
If S, () and S,, (@) are the PSD’s at the output terminals due to (@) and S,(w) respectively, then

2 2
Sa (@) =|H\(@)|" 5)(0) and S 2(w) = |Hy (@) S2(w)
where .
Ry ! joC R,
Hy(w) = Ry+l/jeoC  joRyC+l Ry _ R,
R+ Ry joC R+ Ry Ri(jaRyC+1)+ Ry,  joRR,C+R +R,
R2+1/jcaC jaaRzC-u»l

" -0 - . —

S R| R:

: C Vo C -
(b)

<

)
A A
v
X
W
AAA
<

(a) (c)
Similarly, Fig. S11.4-1
R R
H = =
2(0)) Rz(jd)R|C+l)+Rl JOR\RyC+ Ry + Ry
2 2
50y (0) = 2KTR R ~ md 5, (a)e 2KTR, R; ,
o?RERZC2 +(R, + R,) o?RERIC? +(Ry + Ry)
Ry{(R
S10() = 50 (0) + S, (0) = —erifaEr 1 ) RiRs —
o*R{R{C* +(Ry + Ry) RoRy c
1/ joC R +R, == VY%
b H = =
(b) H(w) 1. _RR jaCRR (R +Ry) 2KTRR,
JjoC R +Ry Ri+Rz —t
2|2KTR R
ve (w) R1+R2
(R, +Ry)? 2KTRiRy _ _ 2KTRi\Ry(R + Ry)

n)ZCZR,zR‘f +(Rl + Rz)z Rl + RZ a)leszzcz +(R| + R2)2
which is the same as that found in part (a).

N



1142 y())=[" Ha)(t-a)da
Rey(7) =x()y(e+7) = x(1)[" Ha)x(e+r-a)da

=7, Wa()x(t+r-aka=[" Ha)R,(r-a)da = z)s Ry(7)and Sy, (0) = H(0)S, (@)

1
Jjo
1

R*—.-——
JjaC

1
" jaRC+1

In Fig. 11.13, H(o)=

and Sy, (@) = 2KTR/(jaiRC +1)and Ryy (1) = 2KTR ¥/ *C o)

(8) We have found R, (r) of impulse noise in Prob. 11.2-8

Ry(7) = ab(r)+a?,and Sy (o) = a +2x2*5(w)
Hence,

11.4-3

Sy(w) = lH(m)lz[a + 2:ra25(a))] = thazlﬂ(O)lz S(w)+ atH(a))l2

and Ry(7) = 5[, (0)] = a?|H(O) + ah{r)eh(~1)

® H)=L-eus). H(o)=1.—

jo+—
T .
ll-l(a))!2 = . and R (:)=a2-2+¢£}’" Y = q? 24»1"i W "
1+?7?’ * ! 1+ w?r? % .
t nt t 1 20 | Hw | o M\’\/\'
S 4 m h(n > { =
Fig. S11.4-3

11.5-1  n(t) = nc(r)cosw t +ng(1)sinw ¢

The PSD of n.(r) and ny(?) are identical. They are shown in Fig. S11.5-1. Also, n’ is the area under

104
2

ace

Sa(@) , and is given by n? -2[;“ x10% +

3

2
or ng

=3

/
N

) is the area under S, (w) and is given by nc = n, [5

125x10*

ooow#i'—-%xsooo] 125x10* N

5k 5

Fig. S11.5-1
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11.5-2 We follow a procedure similar to that of the solution of Prob.

11.5-1 except that the center frequencies are different. For the
3 center frequencies Sy, (m)[or Sp, () ]are shown in Fig.
$11.5-2. In all the three cases, the area under S,,_ (@) is the
same, viz., 125x10* A, Thus in all 3 cases

n? =n2 =125x10* W

N 4 LN
X . ! ‘
Z '37""’ l ] —
-0 | ,5'x low =19k ' IoR ~lok 5 K 1.3 l‘ma 1428

Center {veq . 105k ceritey freq: a5k Center freq- go K

Fig. S11.5-2

1153 n%(e)=nd(r)=n(r) = 2[—x10'3x100x103]-100

1154 (s) Hy(@)=

Bl =@

- k.
'e"5"“?5" F - Fig. S11.5-3
6
Sm(w) - 9+L2_— 6 1
Sa(@)+5a(®) _6 ¢ 602460 wl+10
9+a)2

1 -
(b) hyp(t) = ST 10}|

(¢) The time constant is T:-a . Hence, a reasonable value of time-delay required to make this filter

realizable is ﬁ; = 0.949 sec.

(d) Noise power at the output of the fiiter is
ym L[ S0ISn0) gy 1o 6 4 6 e le 3
27 7= Sy (@) + Sy (@) 2zx7= g2 +10 n:/-l 0lw V10

The signal power at the output and the input are identical
S =S5, =-——I_¢———dm=1

9+

So JlO
SNR = — = —=1,054
R N = 3 0

[
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4

. I G w’+4
11.5-5 (a) H"’(m)'sm(m)w,,(m)' T, ®

2?+4 w*+64
o’ +64 1{ 53.33]
=l
902 +96 9| o?+1067
(®) hoplt) = %5(:)+ 8.163¢ 32660

(c) The time constant of the filter is 0.306 sec.
A reasonable value of time-delay required to make this filter realizable is 3 x 0.306 = 0.918 sec.

(d) Noise power at the output of the filter is

1 Sm(®)Sn(®) 1 f= 32
Ny=— [ B2\ e 2 dw =0544
° 2 I:, Sm(@)+ Sy (@) 27 L*' 9(m2 + 10.67)

The signal power is

h
§ =8, = o= [* —2—dw=1 o0
%4+ 0
So . 1 g3 —
N, 054 o —
Fig. S11.5-5

94



Chapter 12

S S;
120-1 —2=y=-—L = = 4 =l .
: r==5 N=2xS,(w)=2x10"", B o 4000 Hz
7=[000=-——-—‘:;"——-—=S,=0.08
2x 10~ x 4000
Also, H (@)=10"3. Hence, Sy = =8x10*
LA wi
s,=-2-';p[2xsooo;r]=sxlo‘=ﬁ=1o
12.12 | Sem (3 N
- 3
me) Te)
- —>—H W) =, —
< % we J+et
Fig. S12.1-2
2 -10 (4)2-0-02
S, (@) = Sp(@)|Ha () =10 — a = 80007
a
2
==2=x10"7

_lyga 10
No_”jolo (

35dB=3162 = 2 -
N

S,

32 -7
—x10
3

1073
But s,(1) = —a—m(t). Hence,

1 Pa
Also, m? = — =22 = 80008 = 215.7x 10°
2”L°ﬂdm ~ B =215.7x10

Hence, £ =26.96x 10° and S, () = 2696 x 10° rect(f-’-)
a

1221 (a) 30dB-1000=%¢-=y=

© S; =|H (o)’ Sy and 10785, =4x10~ = Sy =4 x10*

=1 =1 64 =
St =~ |y Sm(@)do - ; 2696x10%d0 =

So=10
a?

S = '}E I Sm(@)H, (@) do = ;‘; 5 2696 106[

- 26.96

an

S;
NB

" 107 x 4000
(b) From Eg. (12.7), N, = AB =10"'9(4000) = 4 x 1077

o® +a? 10710 ( &3 2
— W= 3 —+a o
rt 3

= S, =337x10"3

-6 e

m2(1) = 337x107 = m2(1) = 2157 x 10°

o2
a

S

95

26 96
0 a

=268x107*

2696x10%a
n

=5 =4x107

o )
L2 meden, (£

_——ﬂh--».—_

108 o
mz +a2

=6865x10°



12.2-2

S, S; S;
2) —2 =1000= —te = ———l
® N, MB 10719 % 4000

®) N,=NB=10"'"x8000=4x10""

© S; =|H{o) Sy =1078Sr =410~ = Sp =4x10*

=S5, =4x107

12.2-3 Let the signals m;(r) and m,(¢) be transmitted over the same band by carriers of the same
frequency (@, ), but in phase quadrature. The two transmitted signals are Jf[m, (t)cosw .t + my(r)sin wct]

12.2-4

V2 tos we_t

Va sn, t

Fig. §12.2-3

V2 epsd, b

m, u:)+-vs;('t')

L PFl—y—

oEl Mg/t + 0y (2D

V2Zs\nwt

The bandpass noise over the channel is n (1) cosw,r + ng(f)sinw ¢. Hence, the received signal is

{ﬁml (0)+ nc(t)]coswct +[J§m2 (1)+ n,(t)]sin ot

Eliminating the high frequency terms, we get the output of the upper lowpass filter asm, () + 715'%(')

Similarly, the output of the lower demodulator is m(r) + 71; ng(1)

These are similar to the outputs obtained for DSB-SC on page 535. Hence, we have —f—IQ— = y for both QAM

channels.
t)imin m
() p=im-(—A)J—=~—f Hence, m,, = 1A
2 ) 2
®) _‘&_.__"_‘__,.rg,_zln__.’., 2# 57
o A*+m? my° —3 K™ +u
——2—+m
H

2

m .
(¢) For tone modulation x =—i"75=2 and for =1, ~§9—=—-!—7=

mp

Sy Al4m? mlam? m}?

(d) Ratio-’-=-—==——-=———.—=—--=‘ﬂ-+1-x

T m? m? m
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12.2-8

12.2-6

12.2-7

m
(a) From Prob. 12.2-4, -'?-l =t 7. For3c -loading, my, = 3amandx2 = 7 == 9

o x2+p2 Om
andwhen u=1, §L=—1-—y=!-
N, 9+1 10

2
(b) w'hen”=05, .§L=-—-(-o—.sl—_2—r~—7..
No 9+(05)*" 36

For tone modulation, letm(f) = ud cosw,,¢ . For BSB-SC,
$0s8(t) = V2pd cos @t -cos t

= %[cos(w, + o, )t +cos{w, - m,,)t]

2.2 2.2 2.
HA A pA s pd
S = 2 + s - 3 andmp=$+72==ﬁm Hence, the peak power
2 S, S, S 1
= =22 A%and 2% =y ol = P =
Sp—(ﬁ;u) =2u“ A% and N"a-y TN whereS,—4Sp
For SSB-SC
Pssa(1) = m(r)cosw t + my(t)sinw
= JACOSD ! COS@ 1 + pASIN Wt Sin @t = A cos(w, - @y )t
2 .2 2 .2
pA 2,2, 8 S, _uA_ S
S = and m, = ud. Hence, S, =p°A°and 2=y =—="oe=z=——
=3 p=pd. Hence, Sp = pA"and 0™ =7 = 2B = 3B " 2AB
For AM
b am(t) = A(1+ pcosew ut)cosa t
A2 m 2 A
| =t ——— = e
2 2 2 2
mp = A1+ p)and S, = A2(1+ p)2.
Hence,
2 -~ 2
=Sp(2+p ) mdfo_g m2 y= ”2A2/2 ._SL ={ FZ Sp(2+p )
41+ g)? No  A%+m? A2+(y2A2/2) NB  {2+42 41+ u)’NB

S S
Under best condition, ie., for gy =1, —2 = —L£
nel H=b N, " TonB

Hence, for a given peak power (given S, ) DSB-SC has 6dB superiority, and SSB-SC has 9dB superiority
over AM. These results are derived for tone modulation and for 4 = 1(the case most favorable for AM).

For 4o loading, m, = 40, and the carrier amplitude 4 = mp =40y, (for 4 =1). For Gaussian m(z),

m? = a?n (assumingm =0)

2 2
Prob(E 2 A) =j°—’-5-"5e‘5a noi e, = 429° o0
Ao-n

2 2 2 v
Hence, = =870 = 4605 and 5, = 22 _leopton 17 2
20, O, 2 2 2
s, 17102 17(402) 17
Therefore, =l o .M 1 2TM o (4.605) =9.79dB
PTeesh =58~ 2 B s[uua) 3 (460%)
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So 2848 =631 Hence,

o

12.3-1

_3( ) 7( o'm)

631x9 = 47325

Therefore, y =
(®) Also,y = -5/%:» S; =y AB = 47325x2 x 107*® x 15000 = 1.4197 x 107>

_kym kr(3om)
J™Mp _Mf\W9m
® A= 2;:3 2B = 2= 30,000%

S, = a’k}m?(1) = a*k}o? —(10"‘) (20,0007)? = 4x2

= ko = 20,0007

© N, —-5——00199

12.3-2 my = B, m;, = 55 and bandwidth = i Hence,
T T,

(So/No)ﬁ_),L= (2”"3/7'0)282 - 3n?
(So/No)FM 3(43/7;,)2 4

12.3-3 1) = cos® w,t and my =1
1) = -3w, cos? w,tsinw,t and (1) = —3wo[w° cos? @t cosw 4t - 20, COS@ ot sin’ w,,t]
For a maximum
(1) = 0. This yields cos? @t = 2sin? gt

Wt =2sin w,t = sinw,t ! cosmt-“2
ol = o ot = » of Ty3
33 3

or 1-sin?

and

my, = !-30)0 cos? ! sinmotl = 3w, ?-I%J -2
(Sa/No)pM (3‘”0) ’" 9%2

GolNodpyy  3my2 ,(gmoz)

=225

1234 m(1) = a cosw ! +a, coswyt, m, =a +a;

(1) = ~(ayo, sinwyt +ay0, sinw,t), my, = a0 + a0,

(So/No)py _ (27B)’m; __ w3(a, +ay)’
(So/No)FM 3m;,2 Hayo +aza)2)2

2
m%a%(l + ﬂ-)
a2

2
30202 (1 + —-L—L)
@)
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()+x)
s

12.3-§ Error in this problem. There should be 472 in the denominator (see below).
S;u(0) = 0*Sy(w). Hence,

[ o)) e = [ sal2nr)ar = ﬁ,n’f’sm(z#)df
From Eq. (12.42a)
I Fsa)y 1 [Cl#ef e
ISm(2d)df 4" r z(t)dt

These results are true for a waveform m(t)

_ L

2

—l——rdf 3
‘*(f/fo) foL"H

dx

12.3-6 B = :
g m? Pl
fl— =
i 2ksm( ) f sm(g)

gla n-!“

ey sol3)

The definite integrals are found from integral tables.

2k) (n/2k) 1
Ask — o, By, 2 2 sin(/ 2

° sin(3x/2k) =7 (37/2k) 3f°
1237 S, (0)= ' ' @20’ 2oy -z-e"‘”zlz"zdws2

Hence, the normalized PSD’s is E’ﬂfe'” 1o’
o

If W =278, then W = (218)* =2 5"—’3{‘” 120’ 4oy = 202, 1 p(W)is the power within the
o .

band-W to W.
W) =2 jw_ﬂ’_z_e-mzlzaz do = 2[1 _Wnd? ]
0 20

w 29 42
p(®) = 2,and AW) | _ v =099 = W =3030, B=0482c

P()
-E(-—-)-= 095> W =2450, B=039¢c
()
AY) o we2 150, B=03420
)
2
x =099 “; =30602 > W2 =5 PM superior
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2 —
x =095 -“;—- =2000? = W2 = PM and FM equal

2 —
x=09 _\_\/_5_ =1540% <W? = FM superior

12.3-8 m(t)=a,coswt +a; coswzt and
Sml/) =5 [6(/ -R)+S+ R+ L(s(s - f2)+8(7 + )]
m? = [* Sp(7)af =(a? +a2) /2
2 2 2f2 f lzfl "’azsz
U S Sml df/—) af +a2[ 2 2 } af +a}
2
Since B = f5,PM is superior to FM if fzz>m—+—a—;£2—),

aj +a3

2 2 2
(a1/a2) (fléfz) .1 orif1+x2y? < LXX
(a1/ay)" +1 3

that is, if

m? _—
1239 (a) —-—3;92 —-%p’;«. Sincem, = 3¢, m? =o?and234 dB=2188, 218.8=§-ﬂ27=§(2)27
N, mp

= 218;:*3 =164.1. AlsO, ¥ Tpeesn = 20(8+1)

So ﬂmsh 81—2%—1-1" 721

Se . -;—ﬂzr = %(721)2(164.1) =2844=3453dB (40 dB =10,000)

NO
)
(b) 2 -—,Bz (7"’202") 71 = 10,000 or (y g -20)% = 12210 y=2425
Required increase m7=1—12-5’--1479—17d8
12.3-10 From Eq. (12.40) p2 == =
( /,,,,,)

1 1
1) T dulati 2z2 =047
(1) Tone modulation B 3(l+0.5)=ﬂ

(2) Gaussian with 30 - loading ﬁz = -1-( ! ) = p=0547

(3) Gaussian with4¢ - loading p2=1( ! ):psoss

3\1+116
m?
where For tone modulation, —5 =05
mp
-nF o? 1
For Gaussian modulation with 3o - loading, 5 =3
m; (3a)° 9
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. ;E o? 1
For Gaussian modulation with 4o - loading, — ==

m,  (40) 16

12.3-11 Let us first analyze the L+R channel. In this case, the demodulator output signal, when passed through the

2
°t’:; [see Eq. (12.33)}.

@1 __ the signal is restored to (L+R)
Jjo+ oy

0-15 kHz (lowpass) filter, is given by (L + R)' +no(t), where Sy, (@) =

When this signal is passed through the de-emphasis filter H, (o) =
and the output noise power N, is given by
2.2
1 (W 2 N W ojo o [ a W ]
Ny ==—1 Hy(®)' S, (w)dw = =do = W-wytan " —
o ”jo ' ( )l no( )d MZ ]0 w2+m12 Mz )
Let us now consider the (L-R) channel.

Letw, =27 x 38,000 and w = 27 x 2100.
The received signal is FM demodulated (Fig. 5.19¢). The PSD of the noise at the output of the FM

demodulator is S, () = No? / 4% [see Eq. (12.33)] The output of the FM demodulator is separated

into(L + R)' over 0-15 kHz and (L - R)’ cosa,f over the band 38+ 15 or 23 kHz 10 S3kHz. Let us consider
the signal over this passband, where the noise can be expressed as nc(¢f)cosw,? + ng(r)sinw . The signal

is(L - R) cosw,t. Hence, the received signal is [(L -R) + nc(t)]cosmc +ng(t)sinw . This signal is
multiplied by 2 cosw, ¢ and then lowpass-filtered to yield the output(L - R)' +n.(r). But
N 2 2
Sp (@) = Sp(w+o.)+Sp(w-w.) = :4—2—[(w+wc) +(w-w.) ]

@)
jo+

When this signal is passed through de-emphasis filter Hd(w) = , the signal is restored to (L-R) and
@y
the output noise power N is given by

. 1w 2 O 2 2_of _
Ne =;.[o lHd(w)l S“°(m)dw=;?'[° [(w+a)c) +o-oc) ]a)2 +l¢m2 @

2 2_ 2
. 2Nwy [W‘P De ZP1 ian! !_] W=2xx15,000
o) |

Hence, the (L-R) channel is noisier than (L+R) channel by factor%-?— given by
o

o) ) A h

2(W+9}_+_aim'| 1.) 2(B+!i:f_|2m-1_8_)
Ny .
W-o un"(-:—:'—) B- i tan"(f-)

Ny
1 N
Substituting B = 15,000, f, =38,000, f; = 2100 in this equation yields:
%?' = 16616 =222 dB.

]
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12.4-1

12.4-2

12.4-3

L=M"=n=logylL

2
_‘S.'.&=3L22.1_(t_)

2
N, m

-3 Mu[.ﬂ:’.}
2
m,
S,

~—2 =55dB =316200

N, , ‘b,',. (

For uniform distribution

»
)
s

m? = —-}—— "p m2dm
2m, -mp

‘ .
=§mp __MP o MP Mv)‘{

2n m2
(@) 316200=32)""( — Fig. S12.4-2
m
P

_ 3(2)21‘(_;_) =g2n

2n=18.27
Since n must be an integer, choose n =10 and L = 1024
() -I-VSL =3(2)% % = 1048576 x 10° = 6017 dB,
o

Bpcy = 2nB = 90 MHz (assuming bipolar signaling)
(¢} To increase the SNR by 6 dB, increase n byl, that isn=11. Then the new bandwidth of transmission is
22 x45=99 MHz.

S;=2BnE,, E,=2x107, B=4000, n=8

S; =2x4000x8x2x1075 =128
y==L. B =256x 102
MB  2x625x10" x 4000

QN%_) = QV32 = 7569 x107°

B,, = nB =8 x 8000 = 64 kHz (assuming bipolar line code)

@ 22 -

: (’“)Qm[_}

2E -5
whereJZ=\/ £ . 2x2x10 = 2§2=\/32
n N 8

2x625x1077
5 ¥2)'¢ ( 1)
So, —2. = —1221845=4344dB.
N, 1+4(2‘°-1)Q(J32) 9

(b) If power is reduced by 10 dB, theny =256,  Q(v32)= 0(1.79) = 0.0367 and

16
Se . 32) (-‘-) =227=356dB.

N, 1+4(2‘6—1)Q(J3'2') 9
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The table below gives SNR for various values of n under the reduced power.
d)

T 2 3 2 [ 5 5
SoiNo | 7.22dB | 11.70dB | 10.07dB | 8.36d8 | 6.35dB

Hence, n =3 yields the optimum SNR. The bandwidth in this case is B,, = 3 x 8000 = 24 kHz.

12.4-4 1~ Pg = P (correct detection over all K links) + smaller order terms
=(1-2)*(1- B) =[1-(k- )R 1- B]=1- - (K-1)P,

So Pg = B +(K-1)F,
(b) y=25dB=3162, y=23dB=1995

P, = 0({3162/8) = 0(6287) = 16x 10710
P = Q1995]8) = 0(4.994) =3x 107

Pr =99x16x107'043x1077 =316x10"" 2 P,

1245 |m|= ."oA mpm(m)dm-j:mldm=-§
—_— 2
m?2 =j_:m2pm(m)dm=r m? —dm "3
— _ AZ
0’,2“ = m2 -(m) = T
S W b
No [n(1+w)f (om?/mp? )+(2|m|/um,,)+(1/u )
8)2 on
32%) om? I m)? m’
= > — = 6383
(in2s6)” om, 4 1 +0006821 +153x 10"

'usulgq (¥

mp
12.5-1 As noted on Pg. (570), the optimum filters for DSB-SC and SSB-SC can be obtained from Eqs. (12.83a)

and (12.83b), provided we substitute -l—[sm(w +o.)+Sp(w-0, )] for S, () in these equations. Let

sm(‘”) = "‘[Sm(“’ +wc)+Sm(w- ‘”c)]

1 a? . o?
2 (w+a;,)2+a2 (a.v-m,_.)2+a2

a?(0? + 0} +a?) a=3000% o
(mz + +a2) 4a)2 2 o =2xx10°

We shall also require the power of $p, (@) -

1 R
I= ;;I:Sm(w)dw
We can simplify the evaluation of this integral by recognizing that the power of the modulated signal
m(1)cosw,t is half the power of m(r). Hence,
=_—j Sm(w)dw=-—-IO ———dm-—-um“ AN %’- @)

o? +a? 2z ajo

We shall use the PDE system shown in Fig. 12.19
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12.5-2

12.5-3

(a) For this system

! H, (m)r - Sry Sa(@)/$m(@) 3)

l”f-‘(‘”)U: . Si(@)Sq () &

He(o)
Because H (w) and S,(w) are constants, we have
iy = Sr‘/l/sm(w __10%/{8u(@)
Salelr L[ fBn(@)do
where S, (o) is found in Eq. (1). Also from Eq (12.83b)
) G j Sm(m)df 10 [° JSm(@)do
Wale =57 = 1/$n(@) loi/ VSm(®)

(b) The output signal isGm(r) . Hence, S, = szz(t)
We have already found the power of m(t) to be 2(a/4) = 2. Hence

)

Ga (10’2)2(3000::) i

2 2 T2
To find the output noise power N ,, we observe that the noise signal with PSD S,,(@) = 2 x 10~ passes
through the dc-emphasis filter H, () in Eq. (4) above. Hence, S,(w) the noise PSD at the output of

Hy(o) is
. 2x 10"6F‘/§m(w)dm
Sal )’Sna’H(‘”2= 0.

S, =

Also, the output noise power is n.(¢ / 2 and N, -f-[see Eq. (12.6b)), where nc =n?== J $p(w)dw
.S:.. - 3%/20 '

2 r §,(0)do 10] S.(@)do

and

Similar to Prob. 12.5-1

B’m?
The improvement ratio in FM is 5 » Where

4 Iy 1{a@e |
m _2“08"‘(‘”)4{ IOM ZBﬁmdjofmdj=jof‘/‘#_J'f \/-“—

Hence, the improvement ratio is

B(288) _

(o]

13dB.

[}

4
3
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Chapter 13

13.1-1
' authut af fhe
pLe) p &) output of 2 pttd f‘nt{’r matehed
A nbut AT,1 © %. mz';D ATb] © to pie)
T = T t- T 2T, €t
Fig. S13.1-1

For the integrate and dump filter (I&D), the output is the integral of p(r). Hence, att = T}, p,(T;) = AT},
If we apply &(r) at the input of this filter, the output A(¢) = ut) - Wt - T, ) .

Hence,
H(w) = Tysinc (“’;b }-M/z
and
1 N oT;
n%(t) =5 _‘1‘3—2-7},zsmc2 (—ii)dw
=.‘J—'Tllr sincz(xw=—.1‘t
2 o™ 2
and

This is exactly the value of p2 for the matched filter.

13.1-2  The output p,(¢) of this R-C filter is
Po(t) = 4{1-&7RC) 0<1<7
- A(l _ e-r./RC)‘-(u-n)/Rc t>Ty
The maximum value of p, () is 4, which occurs at 7j:
4y = palT) = A1)

ol= bt N do _ N
" 27 27=1402R3C? 4RC

and
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13.2-1

13 02'2

We now maximize p? with respect to RC. Letting x = Ty/RC, we have

2
2 1-¢*
pz___4A 7},_( € )

N x
and
2
2xe”*(1-e *}-[1-e7*)
B e e
dx x2
This gives
2xe * =1-¢7* or l+2x=¢*
and
1 126
x=126 —_ -
or R~ T,
Hence,
24%T;

Paax = (0s16) =%
Observe that for the matched filter,

2 2 24T,
max !.N Jl

E +Eq—2EPq

B = 2 [y [A0)-q(0] e = =L

The energy of p(r) is T times the power of p{r).
Hence,

A1-m? 2.2 2
( )72,4—'42'" n’An=5b

E =
2

P2

AT,
Sumlarly, E =—2—"Eb

= o"p(th(t)dt:jg’-’[ (1-m?)cos? 1 + A%m? sin wcl]dt

2
=—-A§-7;,+A2m27'b

Hence,
P 44T (1-m?)  8Ey(1-m?)
mx TN

)4

Let C) be the cost of error when 1 is transmitted, and Cy be the cost of error when 0 is transmitted. Let the
optimum threshold be a, in Fig. $13.2-2. Then:
A, -a
G =cmp(e|m-1)-cmg( £ )

n
A, +a°)

and

=Coy p(€jm=0)=Cy Q(

106



The average cost of an error is
C = P,(1) Gy + Pa(0) Co ()

If P (1) = Pyy(0) = 05
1 1 A,~a A, +a
C= E(Cl +Cy)= -Z-[Cmg[ pa,, 2 ]+Col4"£;;—o)]

For optimum threshold dC/day = 0. Hence, to computedC/dag , we

observe that P(r“:) P Celd)
ox) = 1_7;7];,,-y2/zdy / g S~

- A? &g AP Y-

and
dQ 1 -x2/2
- . e Fig. §13.2-2
dx JZIK ‘e
Hence,
2 2
[ B R 0
3 3
—_— Cioe 29" -Cye 2 |=0
da, —T'zan o | ©10 01
Hence, )
[(4prar) _ (Ap-a,)’
Cu_,l 20% 202
Cio
and
C 20,4 o C
In J—'—J= 2P and a,==01In [—9-'-]
(CIO o? ° 24, (G
But
NE
2 P
o =—2—— and Ap =Ep
Hence,
a,= ﬂln [—Cj_l-]
13.2-3 We follow the procedure in the solution of Prob. 13.2-2. The only difference is Pry(1) and Py, (0) are not
0.5. Hence,
A, -a A, +a
C = Full) Cr Bal0) o = Anl) i 0“2 o £of0) or 0 2222
n n
and
(4p-20) ("p*"or
dC ] - 2 - 2
= - Pal)Coe 2% -pm(0)Core 2% |=0
v -y (1) Cio Pm(0) Cot
Hence,

Pn(0) C 2a9A a2 P,(0) C
i [ Fa(1) Clool ] :,2, E=ap =gl [‘P;(n) cﬁ:]
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i

t%‘&

But
MNE
2 _Nep -
On = andAP E,

Hence,
[P m(o) COI ]
Pu(1) Cio

125 P(ﬂ"%) P(l"lm l)

Fig. S13.5-1

'(’*Ep) / 2"nW

plrim-) = m

2
e /20k [ g2

] e’("Ep)z/z"zn
an‘/ﬂ J

The thresholds are+ £, /2 and

P(elmo) =2 ”/2 O[J—J
P(elm)= P(e|m_,) = Q[ ,,/2 Q(\/;E‘:,_J

sl 4]
-3}

13.5-2 Here, p(t)andg(r) are identified with 3p(¢) and p(1), respegively. Hence,
H(@) = [3P(-0)- P{-a)fe7*B = 2P(-0)e" /o

He) = 2p(7; 1)
1 ]
a,= E[E,,, ~Ep|= 3[95, -E,]=4E,
But multiplication of 4{t) by a constant does not affect the performance. Hence we shall choose /{r) to be
p(Ty ~ 1) rather than2p(T; ~1). This will also halve the threshold toa, =2E,,. This is shown in Fig.

and

S13.5-2. Also,

Epg = jor” [3p(0)]pl(e)at =3,
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and

F -

J£3,+E,-2£N _ J9EP+EP—6EP _ E,
Pe A ) X AV

9E, +E
The energy/bit is £y, = --—P-i--ﬂ =5Ep Hence,

9. = foss,,
¢ N
1353 ForM=2, WN=2x10"%

For 256,000 bps the baseband transmission requires a minimum bandwidth 128 kHz. But amplitude
modulation doubles the bandwidth.
Hence

Br =256 kHz

107 = Q(]’Z—E-"-)z Ey=27x10""
N

S; = EyR, =2.7x1077 x 256,000 = 0.069W

For M =16
256,000

log, 16

215
Pers = Py log216=4x10"7 = (‘) ,zs,,]

This yields E, = 543x1078
S; = EyRy, = 543x 107 x 256,000 = 139%

= 64 kHz

T=

For M =32
_256000
T logz 32

2
Py = PBlogy32=5x10"" = (3' g[‘, 30E, )

This yields E, =1719% 1075
S; = EyR, = 1719 x 1075 x 256,000 = 44%

=512kHz

13.5-4 ForM=2and N =2x10"%

This case is identical to MASK for M =2

107 = Q[JZQL): Ep =27x10""
N

= EyRy =2.7x10"7 x 256,000 = 0.069W
2565000 x 2 =256kHz

Br=
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For M =16
Py =(logy 16)R, = 4P, =4 %107

)
4x1077 = 2@[‘}%)9 E, =167x107

S; = E, Ry = 167 x 1075 x 256,000 = 04275

In MPSK, the minimum bandwidth is equal to the number of M-ary pulses/second.
Hence,
_ 256,000 _ 4

logy 16

Br

For M =32
Poy =(log3 32)R, =5x 107

2 2
5x1077 zz{ —’T'ai(-:-i—‘l]: Ep =524x107

S; = EyRy, =524 x 107 x 256,000 = 134W

256,000
By = ———=512kH
T log, 32 z
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Chapter 14

14.1-1 The following signals represent 2 sets of 5 mutually orthogonal signals.

- A

-

| |
‘bt Tbb’

2 27 3
= sin 2! ¢
\/-7;”’

T N\ >
\/-;—__-;('rs :r-;‘t

it
+i5
o

i
Wi

14.1-2

ol
Uﬂl

Fig. S14.1-1
L 2
= &
T L g e z -
Rl A
T "2’5"‘1'; 4 R e
] -
T, ‘\'}" +
21, Tl -
VT, -4 |
¢ 2v‘-‘; _L_..J ‘

Fig.S14.1-2
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S | 27
14.1-3 1) (1,1,0)is T=[1+\f2—sinwot] Wy =2
T T

".‘éz.’(\./f

Tc

| 1 4
2) (2,1,1)is T[z-ﬁsinwouﬁcoswot] =——[2+2cos(a)ot+-—)}
T I 4

! .

1 1 1 . 1 1 4
(-=, =L, Dis [——— 2sinw t+\6cosa) t]:——[——+2co{w t+—)]
8y 2 ol 2 o i I ) 73

2/
N7 #\ /N

-i/‘ﬁ:; —\/ To

Fig. S14.1-3
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14.14

14.2-1

a)  Aitx) £, @

"
%L, w (s, 1,-4,4,2)
"o .’..
L] 44
e —db e % 0% e A SIE I T S

T ¢
=1,2,3,1,4) %

J)k) JQ&)

&

T PT T %% fpeo > % % % bt
-.;-u _.2_
% N (-2,4,2,2,5)
(3-2,3,4 1)
Fig. S14.1-4

b) The energy of each signal is:

_1+4+9+1+16 __4+1+16+16+4

E Ty =31 E To =41
| T 0 2 T 0
53=2_+_‘_'.ﬁf_1.6_‘."_176=39 E4=M76=28
) I

¢) F3-Fy =(-6-8+6+8+0)=0. Hence, f3(r) and f4(r) are orthogonal.
Let x(1)=x;  x(t+1)=x; x(1+2)=x;
We wish to determine

pX1X2X3 (X|,12,13)

Since the process x(r) is Gaussian, x,, X3, X3 are jointly Gaussian with identical variance

(a-,z‘l = a,z‘z =0'33 = R,(0) = 1). The covariance matrix is:
1
=XyX2 = X{#) x(r +1 1)=—
6i| Oxixg  xyxs Txixy = Oxyx; = X1X2 ( ) ( ) = RX( ) e
1
K =|0yy, aiz Oxpxy | A0 Oyyxy = Oxyny = Xax3 = X(t+1) X(1+2) = Ry (1) = -
2
Tam Tm Oxg Cues = Oxgq =Ry = O W1+2) = Ry(2)=
e
s0

n3



AR
e e
1 1 1)
K={- 1 - and ‘K‘:(l——i-)
e e e
11
Le” € J
1
An=A33=1"—2'mdsz=Azx=A23=432=—-;
Ai3=A3=0, Ay =1-—
And

1431 |
I Ry S
Fig. S14.3.1
P(Cim) = Pro{ny <2 ant (i) = Prt{ > 2)
P(Clma) = P(Clms) =......= P(Clmyy_y) = pmb(,nlf < §)
Henee
P(Cim) = o) = T =12 d)
and
P(Clm) = P(Clm3) =..... P(Clg.y) = 7-= jeni‘/wd,,l 1 29(75%)
Hence

P =1- P(C)

= 1= P(my) P(Clm;) + P(my) P(Clmy}+..... +P(m ) P(Clmyy )]
=1--;—{[M+2(M-1)g( 2" H AN l)Q(J—)

2
The signal energies are (12) ( 323) ......(i Mz-la)
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Hence the average pulse energy E is

E (M2 -1)a
logz M 12]082 M

2(M l) logz M
Fem = v Mz ~ l)

Which agrees with the result in Eq. (13.52¢)

Also Ep=

Hence

$1: 520 Sy 54
1432 P(Clm ) = P(Clmy) = P(Clms) = P(Clms) : at *‘!-":
" .

P(Clmz } = P(Clms) = P(Clmg) = P(Clmy )
P(Clm)) = P(n; <52’-, n, > :_f-)

| -dez-dez))-|-d)]

P(Clmy) = P(|n||<-g-, n > :25)

J-d )

€)= 3{Atcn)+ )} Q[mm” )
P,M='-P(‘-‘)’EQ[75’I]["3 7’225)]

and

tf-Tb | -Ellz-

r. s; *
"'""\"' Combute

confarafor‘
n 5&1,'" = 5 deef'

%S |r.s ~Ey/a | l@ Daf

r. " -“Ia’

E

e

Fig. S14.3-2
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The average pulse energy E is

f=-;{4[(-:-)’+(%J2]+_4[(%)2+(%)’])=%3

and

This performance is considerably better than MASK in Prob. 14.3-1, which yields

Py =1750 [‘/msj"'b ]for M=8

14,3-3 In this case, constants a;'s are same for k=1, 2, ..... M. Hence, the optimum receiver is the same as that
in Fig. 14.8 with terms a;'s omitted.
We now compare -5y, 753, ...l 'Spf .
Since r-s; = JEr cosé, is the angle between r and s, , it is clear that we are to pick that signal s, with

which r has the smallest angle. In short, the detector is a phase comparator. It chooses that signal which is
at the smallest angle with 7.

14.3-4 Because of symmetry,

P(Cim) = P(Clmy) =....= P(Clmy)

where M =2N
-d
S; == or —
v 2
2
and El =Ez =...= EMa:-NTd—=
Let

Then

Fig. S14.3-4
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and

P(C) = P(Clmy)

o]

Here, M =2V . Hence, each symbol carries the information log; M = N bits.

Hence
Ey=E/N
and

14.3-5 d-PJr— Ml Mo 'JL4~—
o Ny Plm) d ERERERER

= ﬂ-lnz + i Fig. $14.3-5

PLCm)= chn.) =Pl > -] -1 %Iﬁ]

Aci)= s <) -1-20] 7
Plclne)+ L lchm) L Pchn.)

[ zmﬂ ’Q[fﬁ)

"2 WJ W]

- 2
E = 05(0)+0254% +025d% = ‘—’2-

1 -2—5--1:12 z-E—+ln2
P¢M=1-P(C)=‘2' -ﬁ%ﬁ + ;“7?/-&
14.3-6 ' Fou =1~ P(C)

P(C) =5 [P(Clm) + P(Clm )]
Acm) - L

N""‘ va—

Also

Hence

dqydg,

___1_— g} tan(x/8) -[(ql -d) w}/dl]
Y Z g1 an(x/8)° dqadg,
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2 .t . . o2
T t=> ¢ ‘g‘i\
(t D s o
1|. ¢3_ ) m \\‘@ 5 Sz
b —rb . \\\ "
Y t > L ' ®s,
3 ]

Fig. S14.3-7a

Note that
d d d d
5= 2¢l 2¢2, Sz—2¢1+-2-¢2

d d d d
53 ='2'¢1 '-2-¢2, 54 =--2-¢| +5¢2

118



-

) = \r.-rzb%
ib  t t> T T. i
= J&% 2w [ ]~ =
VT,

Fig. S14.3-7b

(c) P(Clms) = Prob(noise originating from s5 remains within the square of side %)

= ”(|"1| < %’ Ina| < %‘)

o] o) etz
Pl

We also observe that £, the average energy is E= —;—(ig—] = 044>

and

E_04d® 024> . d ,515 55
Y N 2¢ 7
Therefore P(glms) = {]’ SE }

The decision region R, for m, is shown in Fig. a and again in Fig. C-1. R, can be expressed as the first

quadrant (horizontally hatched area in Fig. C-1) =4, . Thus
P(Clmy) = noise originating from s, lie in R,
= P(noise lie in 1st quadrant) - P(noise lie in A,)

2
= [l —Q( d )] - P(noise originating from s, lie in 4;)
20,

But
Fig. C-2)

P(noise lie in 4)) = %[P(noise lie within outer square) - P(noise lie within inner square)] (See

[”U"tl nal<3) l{lﬂ.l ool < )]
[t et
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s%["‘g(zzu)+4g(2"§°'r' H

" P(q,,,z)=1-2Q(2:n)+9(2:")’9(24;0")
=1- Q(zg,,] Q(ngcrn]
e

{4

Moreover, by symmetry

P(eimy) = P(elm;) = P(elms) = P(elms)

Hence

Fig. $14.3-7¢

14.3-8

. . fmg4 ,

/. o o m2 )SV

L Ny - /
™ . ‘-“" *mq i- | .:..
- d-
. . . S N
Ry
[} . L4
Fig. S14.3-8

14 1
PC)= 15 Z4P(chm) = 5[ P(CIm)-+ P(chm)+ P{cims)+ P(CPm)
The decision region R, for m; (see Figure) can be expressed as
Ry = outer square of side dv2 —-4% (outer square - inner square of side d)

= -:— outer square of side d2 +-3— inner square of side d
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Now P(Clm;)}= Prob(noise originating from m, lies in R;)

== P(n lic in outer square) + = P(n lie in inner square)
-—r(nn: L)+ 2 i< )
] ]

Similarly R;, the decision region for m; (see figure above) can be expressed as
Ry = outer square of side dv2 - -2!-(outer square - inner square of side d)

= %outer square of side d2 —-;-inner square of side d

P(Clm, ) = noise originating from m, lie in R,

and
"’{h‘l )+—P(’n[ )
2
o] et
1 EE N S S
R3 Ra Ra R,

The decision region Ry for my can be expressed as
R3 =R 4t RB -

and
ms) = Prob{noise originating from m; lie in R
3 3 3

= P(noise in R 4 )+ P(noise in Rg) - P(noise in R¢)

= P(n; >0, |n2|<d)+-;-l’(ln|l, lnz‘<7d;)'%[’{|nl" |n2|<7"2-)— "(l“"' i ‘%)]
A S s ] s )]
A ] -]

—

[l HEL XN
Ny
e K
L k"" {
ade
R, Ry
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The decision region R4 for mg can be expressed as

Ry=R4-Rg

and

P(Cime) = P(ny > ~d, ny > .d).“l{pqndT Inz| <d)- P(lml: Ina] <7“12_-)}

= [ 1- Q(dg}}z -%[1 —zg(dg)]z + %[l -29(—;7]]2
For any practical scheme Q') << 1, and we can express
[1- k()] = 1-2k0()

Using this approximation, we have

riem)=1- - 7
-l )
ren B A
o) (2]

Hence
1
P(C)= L[ Pcm)+ P(Clm) + P(Cls) + P(Clms)]
=]-— __ J-_
o)) 43
Now Ey=d?, Ey=2d%, Ey=4d>, and E, = 8d*.
Therefore E= ::-(dz +2d? +4d% +84%) = -14342
And E, = E =_‘E—:
5 logz16 4
2
so that -E—é-zizlgf_
N 16 A
Therefore
ro-1-2g (B ) 3o [6E ). 3 f 2y
2 1SN} 4 1SN ) 4 15N
Moreover
35|, fﬁ!—l . /22&
15N 15 A 15 W
Hence
3 8 E,
P(C)z=1-=
©)=1-2o( (£ %]
And
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3 8 E,
Py=1- == B
eM P (C) 2 Q[ 15 A )
Comparison of this result with that in Example 14.3[Eq.(14.57)] shows that this configuration requires
approximately 1.5 times the power of the system in Example 14.3 to achieve the same performance.

14.3-9 If 5 is ransmitted, we have
b,=E+a+\/En1 , b_,=-E+a-ﬁE-n‘
b2=d= Enz , by=a- E ny

by =a+VE ng , bi=a-JEn,

and
P(Clmy) = Prob.(b; > b_y, by, by, -+ by, b_y)
Note that
b>b, impliesE+a+«/En1 >-E+a—fEnl or n >-JE
b >b hnpliesE+a+JEn|>a+JEn2 orrrz<J-E—+nl
by>b_y hnpliesE+a+JEnl>a-JEn2 or n2>—(JE+n|)
Hence
8, > by and b_, implies -(nl +JE)<n2 <(n, +JE)
Similarly
by > by and b_, implies -(n, +JE)<nk <(n1 +f§)
Hence

P(C]ml) = Pl’Ob.(bl > b—la bz. b_z, b3, b._g,"' bk, b.k)
= Prob.[n‘ >—JE, |ny] < (nl +JE), n3] < (nl +,/E)’ oy ] < (n, + J_E')]
Since n|, ny,--- ny are all independent gaussian random variables each with variance /2,

P(Clmy) =[P(n1 >-VE) P(|n| <n, +VE)P(jn3|<n, +JE) --‘P(}nkl <m +JE)}

1 ° ) N-1
g Lt o] o

7 Jr 2
Let y =2 +JE
¥ ;;JJ/Z
we'{)"‘/_%] %[l_zg(y)]hl—l

-J8E/N

P,M=1-P(qm‘)=l-:/;=”

E
logz 2N

Also E, =

14.4-1 The on-off signal set and its minimum energy equivalent set are shown in Figs. (a) and (b), respectively.
The minimum energy equivalent set of orthogonal signal set in Fig. (c) is also given by the set in Fig. (b).
Hence, on-off (Fig. a) and orthogonal (Fig. c) have identical error probability. The set in Fig. (b) is polar
with half the energy of on-off or orthogonal signals.
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N
N
— . — -
; 4 R ° @
2- 2 @
S k)
Fig S14.4-1
2
1442 Here ¢i()= 7:;0050)0‘ = 4/40 coswq! wo = }21
¢2(I) = JEsin ol M
Therefore
s()=v20420) |s1=y
s()=VSa() | s=V59
()=-V58(1) |s3=-V50
The vector a = %Zs,- = %[Jﬁ¢l - Jﬁ(‘bl +J55¢2] = J—i—qtbz .
Hence the minimum energy signal set is given by
3= 510~ 22 420 = V38 42002 () = 2 nor
550 2(0)- B 0= 5 1) - 2 ) 100 cosw - L sino

53(‘)"33(’)"£¢2 (1) =-v5 ¢)(1) -£¢2( )=—10ﬁcoswot—2oﬁ

The optimum receiver — a sultable form — in this case would be that shown in Fig. 14.8a or b.

5,

sinwg!

\\\ . ] - .’
R_; “¢ \ R:_
3\
- 5'; s;_ q ->
Fig. S14.4-2

14.4-3 To find the minimum energy set, we have a = -:-(sl +5)+53+84)= -h-6

Hence the new minimum energy set is

=si-d-t=VIih+d = +VidH=—g-h.Si=h-V3 ¢
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Note that all the four signals form vertices of a square because (5, 3, ), ($2 §3), (S5 54), and (34 5,) are
orthogonal. The distance between these signal pairs is always 24/2 . This set is shown in Fig. S14.4-3a.

The signal set is now rotated so as to yield a new set shown in Fig. S14.4-3b.

O . e,

coml:u'(‘e,

Z s

n
O Lm

-— - -

%é%
c;mrufe.r
¢seleet laBeAj

)

b e at Q- = -oH 5N

Observing symmetry we obtain
P(C)= P(Clm) = P(Clm;) = P(Clms) = P(Clmy)
= P(n, >-\/'fandn2 >—\/2_)

=
[ Q(f)] [9(75‘4’)] =[i- o6

Py =1-P(C)=1-[1- O(316)] = 158x 1073

14.44

_ 2 _ 1 1
ST A Ay A i 1 A

) @ (&) i
1oV L ovia] * PR N

Sa
S
,55 t-» ;'d’ 2157 T 1 5-‘—(.’.0

-‘“ S
INE 1OYE
(&) The orthogonal basis set (b) The signal set (e)The minimum energy odt

’ L / )7 A
s, (& 3 S8 $af¢)
2x)0 A 5
° += o Lo © 2x15° & ~-
-4 (d) The minimwin energy wWaveforms
Fig. S14.4-4
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14.4-5

14.4-6

P(Clms) = P(Clmy) = n,<_7)- - %’i—r} 1-g(10)
P(Clmy) = P(ln[ < m} =1-20(7.07)

and
P(C)= %[2 P(Cim)+ P(Clm, )] = %[2 ~20(7.07)+1-20(707))

- 1-% 0(7.07)

Py =1-P(C)= %Q(7.07) £103x10712

2
Also El=E3=(ﬁ] =4x1073
=( ! )z+( L )2=2x10'3 E=X(E +Ey+E)=1x102
10v16)  \10410 3! 2773

Mean energy of the minimum energy set:

. -3 -3 _4 o3
Epin --5(2x10 +0+2x10 )-;xlo
The use of Eq. (14.76) and signal rotation shows that the minimum energy set in this case is identical to
that in Prob. 14.4-4. Hence the minimum energy set is as shown in Fig. S14.4-4c. this situation is identical

to that in Prob. 14.3-5 with d = EJ}J; From the results in the solution of Prob. 14.3-5, we have

- g2 3
E=z—=10
2

nls

Also, we are given s,(0)===10">. Hence, N =2x107,

(a) From the solution of Prob. 14.3-§
Py = —Q(7 02)+0(7.12) =109 x 10712
(b) and (c) identical to those in Prob 14.4-4

(8) The center of gravity of the signal set is (s; +35)/2
Hence, the minimum energy signal set is
(s1+82) 3,-s, (31+82) s5-5
= & = - =
2 7 TR 2
The minimum energy signals are

x(t) = 05-0.707 smﬂz"i

X =8 -

g = 20007
x,() = 0.707sin =% > o _os
0.001 Dnt s
®  E =] (o.s - 0.707 sin—> 2")dx=0.4984x10'
0

E,, =E, =04984x107°. Weare given N =5x10"S

QH J 0(4.465) = 041x107°
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(c) We use Gram-Schmidt orthogonalization procedure in appendix C to obtain

»(1)=5(r)
l 2sinwgyr dt

o8

242

)’2(1)=*/55iﬂ00'- =\/2-sinwo:——;-

001
§, = 2L
il
l-"ll=\”.l’12d’ = V001 M =:/.—'-yé==3l.6y,

»3 (t) =1 -cos2mgs --8-sm wgt + _§__

IJ’ZI \/ J’2d’="°01 |--—2- P = =722y,
001 1--3;
22

()= ;l—ﬁ-yn (1) =03165 (1)
5(1) = 7-23-7- i210) - 71(1) =01385,(1)+.02855, ()

351
5,(*-) . Sa.(t)
) RO
X oo!
o-ct} ';-; . 000y . c.oof t*> t—~
-2
he (ol
~
% ... @2
(o] o’38 sivese . . .
. : s'
'Y g
] 80288 0036 .

Fig. S14.4-6
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Chapter 15

15-1.1

15.1-2

15.1-3

15.1-4

15.1-8

P =04, P, =03 P,=02and P, =0l

H(m)= (P log L+ Pylog R, + Pylog Py + Py log Fy)
=1.846 bits (source entropy)

There are 10° symbols/s. Hence, the rate of information generation is 1846 x 10° bits/s.

Information/element = log, 10 = 3.32 bits.
Information/picture frame = 3.32 x 300,000 = 9.96 x 10° bits.

Information/word = log, 10000 = 13.3 bits.
Information content of 1000 words = 13.3 x 1000 = 13,300 bits.

The information per picture frame was found in Problem 15.1-2 to be 9.96 x 10° bits. Obviously, it is not
possible to describe a picture completely by 1000 words, in general. Hence, a picture is worth 1000 words
is very much an underrating or understating the reality.

(a) Both options are equally likely. Hence,
I =10g{g) = 1 bit

(b) P(2 lanterns) = 0.1
1(2 lanterns) = log 10 = 3.322 bits

(a) All27 symbols equiprobable and P(x;)= y27.
Hy(x) = 27(3 log 27) = 4755 bits/ symbol
(b) Using the probability table, we compute
27
H,(x)=-Y P(x;)log P(x;) = 4.127 bits/ symbol
i=l

(¢) Using Zipf's law, we compute entropy/word H_(x).

8727
Hy(x)=~ Y P(r)log P(r)

r=1

8727
=~ 5 U jog(8L) = 9.1353 bits/ word,

r=1
H/letter =11/82/5.5=2.14 bits/symbol.

Entropy obtained by Zipf's law is much closer to the real value than H;(x) or H,(x).
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1521 H(m)= 2 Plog P =— blts
i=l
Message mability Code S S s; s
m, 12 0 12 0 12 0 12 12 0
m; 1/4 10 1/4 10 1/4 10 1/4 l/4 12 1
m; 1/8 110 1/8 110 178 110 1/8 1/4 ll
m, 1/16 1110 1/16 1110 1/16 1110 1/8 lll
mg 1/32 11110 1732 11110 1/16 1111
mg 1/64 111110 1732 11111
m, 1/64 111111

L= ZPL =— (l)+-(2)+—(3)+—-(4)+
= -:—: binary digits
Efficiency n= -—(L—ml 100 = 100%

Redundancy y = (100- ) = 0%

7
H(m)=-3 P, log P, = 2289 bits

SO+ 5O+

15.2-2
i=1
= 2289 _ 14442 3-aryunits
logy 3
Message Probability Code s 5
m, 1/3 0 173 0 173 0
m, 13 1 173 i 173 1
m; 19 20 1/9 20 1/3 2
m, 1/9 21 19 21
mg 1127 220 1/9 22
mg 1127 221
m; 127 222

=3 AL -—(1) -(1)+—(2) -(2)+3 =(3)

i=]

9
=1.4442 3-ary digits

3-ary digits

Efficiency n= H(m) _ 14442

x 100 = 100%
L Laeay *100=100%

Redundancy y = (1-7)100 = 0%
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4
152-3 H(m)=-3 P, log P = 169 bits

i=1

Message Probability Code s Sy
m, 0.5 0 0.5 0 0.5 0
m, 0.3 10 03 1 o],_. 0.5 1
m; 0.1 110 02 11
m, 0.1 111

L= PL; =05(1)+03(2) +0.1(3) + 0.1(3) = 1.7 binary digits

Efficiency n= —’-’%ﬁxlm: li%9-x 100 =992%

Redundancy y = (1-7)100 =08%

For ternary coding, we need one dummy message of probability 0. Thus,

Messg_glc ﬁP?obability Code S
m, 0.5 0 0.5 0
m, 0.3 1 0.3 1

m, 0.1 20 0.2 2
m, 0.1 21
ms 0 22

L=05(1)+03(1)+01(2) +0.1(2) =12 3-ary digits

1.69
logs 3

Efficiency n= —}i(z-@ x 100 = !—(Eji x 100 = 88.86%

H(m) = 169 bits =

=1.0663 3-ary units

Redundancy y = (1-7)100 = 11.14%

15.2-4

Message Probability Code S S;
m, 12 0 120 120
m; 1/4 1 1/4 1 1/4 1
m; 1/8 20 1/8 20 1/4 2
my 1/16 21 1/16 2]

mg 1/32 220 1/16 22
mg 1/64 221
my 1/64 222
21 -
L=Y PL =% 3- ary digits

From Problem 15.2-1, A(m)= g—;— bits = 1242 3-ary units

. H(m) 1242
P Sl =" %100 = 94.63%
Efficiency n 73 x 100 13125 x100 63%

Redundancy y = (1- 7)100=537%

130



15.2-5

Message Jl;robability Code S S2 )

m, 173 1 173 1 13 1 173 1 13 1 3 0
m; 173 00 113 00 173 00 /3 00 13 00 13 1
m; 1/9 011 179 011 179 011 219 010 173 01

my 1/9 0100 19 0100 1/9 0100 179 011

ms 127 01010 127 01010}—,1/9 0101

mg 127 010110 227 01011

m, 127 010111

L=YPL = -;-_5, = 2.4074 binary digits

H(m) = 2289 bits (See Problem 15.2-2).

H(m) « 100 = 2289

Efficien =
yn== 24072

x 100 = 95.08%

Redundancy y = (1-1)100 = 4.92%

15.2-6 (a) H(m) = 3(}log 3)- 1585 bits

(b) Termary Code

Message Probability Code

m, 1/3 0
my 173 i
m; 173 2

L=2y+dm+lmy=1 3-ary digits

30Ty g
1585
H(m)=1585bits = ———=1 3. it
(m) log, 3 ary un
Efficiency n=ﬂ—(l:l‘lx100= 100%

Redundancy y = (1-17)100=0%

(c) Binary Code

Message__Probability _ Code 5)

m, 173 1 23 0
m, 13 00 13 1

L= %(1)«»(2)%(2) = % = 1667 binary digits

, H(m) 1585
=l 100 = —— = 95089
Efficiency n 7 x 100 1667 x 100 = 95.08%

Redundancy y = (1-7)100=492%
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(d) Second extension — binary code

1 1 1 29 . . .
L= 5[(7)(;)(3) +(2)(-;)(4)] kT 1.611 binary digits

H(m) = 1585 bits
Efficiency n= ﬁ(zm—) x100= -:%?1: x 100 =9839%

Redundancy y = (1-7)100 = 1.61%

Message  Prob __ Gode s) 8 3 ) — L] ... 5
m %] 01 w0 R o1 o n o0 iR 00 an ] B0
mm; 19 0000 1”00 29 10 29 10 » 10 2% 0 13 oo]..r’m )
mmy 1% 0001 15 0000 » 00l pY, ) it b, T 2’ 10 29 0l

mym, 9 110 1% 0001 19 0000 1’ 00 29 000 b7, I

mam; ” m 1 110 1% 0001 1 0000 1 001

mym, 1:) 100 1) 1 w10 1% 0001

m;m, » 101 1) 100 1w

mym; 19 010 19 101

mm; 0] o1l

15.4-1 (a) The channel matrix can be represented as shown in Fig. $15.4-1

P(») = Pnlx)) P(x;) + P(y|x2) P(x2) , Xy 2/3
_21,12. 13 P=3
33 103 45
P(y)=1- Pyy) = 22
P2 ——
] 1 3 X Q. Ya
(b) H(x)= P(x;)log P + P(x)log Plx) o
= %logz 3+ %logz % = 0918 bits Fig. S15.4-1

To compute H(x|y), we find

P(xylyy) = LQLEDPY) _ 10 Py = POAIZDPE) _ S

P(y) 13° P(y2) 32
_PQsPay) 3 _ POulry)P(xy) 54
P{xal») Pon) 3 P(x3|y2) P0) %
1 1
H(x|y|) = P(x|y;)log P + P(x3|y,)log Poaalrn)

10, 13 3. 13
1008, B 3i0g, B o779
=713 %827t 13 B2

1 i
H(xly3) = P(x)|y1) log ————+ P(x3}y;)log ————
)= A R B Y R B
S 32 sS4 64
= logy 2242 10g, 84 - 0624
32 BTyt %y
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and
H(xly) = POn)H(x{y1) + P(y2)H(xy,)

13 32
===(0. =2 (0.624) = 0.6687
@79+ -(0624)

Thus,
I(x]y) = H(x) - H(x}y) = 0.918 - 0.6687 = 024893 bits/ binjt
H(y)=2X P(y,)log =-l—310g£+£log£=0.8673 bits/ symbol
i P(y;) 45 13 45 32
Also,

H(ylx) = H(y) - I{x]y) = 08673 - 02493 = 0.618 bits/ symbol

15.4-2 The channel matrix P(y;]x;) is

(P) X, o L -y, (P

1 ox' 0 P
—S—
»il0 p 1-p (®) X2 7 Yo (R)
01-p p m
Also, P(y,) = P, P(y;) = P(y3) = 0 ) x; b Yy (&)
Now we use P(x;ly;)= Pyjlxi) Pexi) o obtain Fig. S15.4-2

T P PO 1) |

X;

1 0 0
01-p p

4

H(x) =¥ P(x;)log P(‘ 5 =—Plog P-2QlogQ with (20=1-P)

=-—[PlogP+(l—P)log(-l%’:)J=n(P)+(l—P)
1
H = P P i ) 10g —————mr
(xly) ;‘IL (y;) P(xily;)log i)
1 1 i 1
= Plogl+%plog;+(l-p)logl—_-;]+4(1—p)log-l—:;+plog;]
=0+200(p) = (1- P)Q(p)

1(xly) = H(x) - H(xly) = Q(P)+(1- P)-(1- P)Q(p)
=Q(P)+(1- P)1-Q(p)]

Letting B =2P) or Q(p) = log 8
1(x|y) = Q(P)+(1- PX1-log )

d d .
;Fl(xly) =0 or -Z;[Q(P)*»(l— P)X1-1log B)] = 0. This means

;F[Plogi’+(l - P)-(1- P)log(1- PX1-log /)] =0
log P - log(1- P)+[1-log ] = 0
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Therefore logi% =-1+logf

Note: -1+log; f=-log; 2+log, A = log; -g

P B B 2
~_=£ P=—t -P=
mpz T P mit-Pegs
s0
A B+2 2 A+2 2 B+2

C= MAX I(xly) = i I (1-log ) = log 2—=

(xly) 53 og r; +,8+2 og= +p+2‘ ozsﬂ) og r;

]

15.4-3 Consider the cascade of 2 BSCS shown in Fig. S15.4-3. In this case
Py () =(1-RAXI-R)+ AR =1-PA - PR -2RP
PO =(1-R)AR + A(1-R)=~A+PA-2AP

Caseade o | The k+ Bsc
k- ase_s’e \.. u’/' e
- My M — LL)

Fig. S15.4-3

Hence, the channel matrix of the cascade is

I-A-R-2AR  R+R-2RR | [1I-A R J1-A A
A+P-2RP 1-R-A-2RP] |R 1-RAlA 1-A

This result will prove everything in this problem.

(a) With A = P = P,, from the above result it follows that the channel matrix is indeed M 2,
(b) We have already shown that the channel matrix of two cascaded channels is MM, .

(c) Consider a cascade of k identical channels broken up as & - 1 channel cascaded with the k“* channel.
If M,_, is the channel matrix of the first & - 1 channels in cascade, then from the results derived in part (b),

the channe! matrix of the k cascaded channels is M, = M) _; M. This is valid for any k. We have

aiready proved it for k =2, that M, = M3, Using the process of induction it is clear that M, = Mt
We can verify these results from the development in Example 10.7. From the results in Example 10.7, we
have, for a cascade of 3 channels

1- Py =(1-R)* +3P2(1-P,)
=1-3P,+3P2-p3+3p2-3p3
=1-3P,+6P% -4pP>

and
Pc =3P, -6P%+4P3
Now
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e [l-P, P, ]’ _[1-Gr.-6R*+aR?)  3P.-6R7+4R}

F, 1-F] |3P-6P2%+4P}3 1-(3B, -6P,% +4P%)
Clearly

Pz =3P, -6P2 +4P}
which confirms the results in Example 10.7 for &k = 3.
(d) From Equation 15.25
1 1
C; =1-| Pg log—+(1~ Pg)log———
s [EOSPE*-( E)ogl—PE]

where Pg is the error probability of cascade of & identical channel.

We have shown in Exampie 10.7 that

PE=1—[(1-P,)"+ i P/ (- P)"‘f]
j=2.467 )'
If kP, <<1, Pg = kP,
and
C = l—[k}’¢ log—L+(l—kP,)log ! ]
kF, 1-kF,
15.4-4 The channel matrix is
v »n »
x | 9 0 »r g=1-p x=0
5| 0 49 »p xy =1

P(») = P(x;, )+ P(x3,3) = P(x)) P(yi|x}) + P(x32) P(3ix2)

P(yy) = P(xy,y2) + P(x3,y2) = P(x;) P(y21x)) + P(x3) P(32(%3)
P(y3)=1-P(n)-P(y)=1-g=p
Also,
P = PR 32

PO |22) P(x7)
P =___L_L._2_ 0
(ley ) Pony

P(y;1x;) P(x)
P AR AR
(x1ly2) = POom) .

P(y,|x )P(xz) q/2 _
P = SA212207\R2) _
(x3]y2) = POr) . /2

PUsix))P(x) _p/2 1

P(x|y3) = ) > 32
P P(ylx)P(xp) _p/2 _1
(x21y3) = ) p 2
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P(xy,31) = P(x)) P(nilxy) =
P(xy,y2) = P(x)) P(nalxy) =
P(x1,y3) = P(x) P(y3)%,)
P(xy,31) = P(x2) P(n1lx2) =
P(x3,y2) = P(x2) P(y2l%2) =

s o e

L}

P(x3,y3) = P(x2)P(y31x3) =

Niw wjae oN

Therefore,

H(x) = - P(x))log P(x;)— P(x3)log P(x;)
1.1
2 2

=1

H(xly) = ZZP(x.,y,)los e ij)

q 1
=—0+0+— +0+— 0+-— =
5 (0+0+2p+0+-gx0+2p=p

I(x|y) = H(x) - H(x]y)

=1~ p bits/ symbols

- P(x;,y )}
P(x ,l ) Z§ i y’)°gp( %17,

1
= P(x;,y;,2x)1 - P(xi,y;,2:)]
§§§ (%Y j 12k ) 10g = Plx " D §§§ (xi,yjs24 ) log = P(xily,)

_ P(x;iy;)
B §§§ Py zlos P(xiizy)

15.4-5 H(x1z)- H(xly) = T3 P(x;.2;)log
x 2

Note that for cascaded channel, the output z depends only on y. Therefore, x b 4 B
P(zly;.x;) = P(zxlyy) —y——pr—9

By Bayes’ rule

P(xilys,25) = P(xily;) Fig. S15.4-§
and

P(xfl)’j’zk)
H(x|z)- H(xjy) = T T P(x;,p jo2i ) log— =
(x|2) - H(xy) Z§Z inyjpri)log— oS

) . P(xilyj'zk)
_§§P(y;,zk)[>;1”(’:!yf”*)’°‘ P(x;lzx) ]

It can be shown that the summation over x of the term inside the bracket is nonnegative. Hence, it follows
that

H(x|z)- H(xly)20

From the relationship for /(x}y)and /(x}z), it inmediately follows that
I(x{y) 2 I(x|2)
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15.5-1 We have H(x)= j_‘lluplog%dx = ]_‘L—p log pdx and j_‘:lpdx =1
Thus,
oF
F(x,p)=-plog p and > = —(1+log p)

$1(x.p)= pand 2L -
op

Substituting these quantities in Equation 15.37, we have

~(1+log p)+a, =0=p=e""'

and
medx = I_I‘L‘e“"'dr = ZM(e“"l) =1
Hence,
- 1 1
A ST
Also,

H(x) = JMp(x)logp( )dx _[M—M-IogZMd:-logzM

1552 Wehave H(x)= -] plog pdx, A=[ xpa, 1= [ pax

F(x,p)=-plog p and —z%=-(l+logp)

¢1(x,p) = pxand —ﬂ-x

- ...&=
¢2(LP) =p and ap

Substituting these quantities in Equation 15.37, we have

~(l+logp)+ax+as =0
or

p= ea,x-c—az-l - (eaz-l)ealx
Substituting this relationship in earlier constraints, we get
Hence,
1= © _ID ay-l1 NE g = “eaz-l, az-l _ _
_jopdx-oe e “ ;e a;
p(x) = -ae®*
and
1
A= jo xpdx = [*-a xe® ¥k = N
Hence,
a)= —-;- ande“"l =-ap = A
$0
7
—_ x20
pxy={4°
0 x<0

To obtain H(x)
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15.5-3

15.54

H(x) = -J:p(x)logp(x)dx = —j:p{-logA --;—loge]dx

= log Af: p(x)dx + -l-?-j;e-j: xp(x)dx
= log 4 +loge = log(e4)

Information per picture frame = 9.96 x 10° bits. (See Problem 15.1). For 30 picture frames per second, we
need a channel with capacity C given by

C=30x996x10° =2.988x 107 bits/ sec.

But for a white Gaussian noise

S
C= Bl 14—
°g( N)

We are given -1‘5;— =50db=100,000 (Note: 100,000 = 50 db)

Hence,
B=18 MHz

Consider a narrowband Af where Af — 0 so that we may consider both signal noise power density to be
constant (bandlimited white) over the interval A/ . The signal and noise power S and N respectively are
given by _ '
§$=25,(w)Af and N =2S,(w)Af
The maximum channel capacity over this band A/ is given by
S+N S;(@) + Sp (@)
Car = Af lo = Af log | 2—"-2—
v Af‘[N]A’g[ Sa(@) ]
The capacity of the channel over the entire band (f}, f3) is given by
S 1o | Ss(@) +Sy(@)
C= log | A
Ji o8 [ @ |7
We now wish to maximize C where the constraint is that the signal power is constant.
Zj'ffl’ S;(w)df =S (aconstant)
Using Equation 15.37, we obtain

0 S, +8S a8
_...log [-L—.E.].ya——i =0
agS n as’

or
Ss +8, = --1— (a constant)
a
Thus,
1
S5(@) + Sy (w) = =

This shows that to attain the maximum channel capacity, the signal power density + noise power density
must be a constant (white). Under this condition,

f: S;(@)+ S, () _tf 1
c= o [ SO oy v [

=(f2- fi)log (— %)— jffl’ log [S,(w)]df
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= Blog [Ss(@) + Sp(@)]- | f|2 log [Sy(@)] df
15.5-5 In this problem, we use the results of Problem 15.5-4. Under the best possible conditions,

C = Blog [5,() + 5(w)]- jfff log [Sn(@)]df
constant

We shall now show that the integral jj{lz log [Sq(w)]df is maximum when S,(@) = constant if the noise
is constrained to have a given mean square value (power). Thus, we wish to maximize

[ 108 [y (@) df

under the constraint
2 I'f? log [Sp(@)]df = N (aconstant)
Using Equation 15.37, we have

) 8s,

—(logS —==0
as,,(°g “)was,,
or
—‘—-+a=0
n
and

Sa(w) = --:; (a constant)

Thus, we have shown that for a noise with a given power, the integral
J:
7 1og [Sn(@)]df

is maximized when the noise is white. This shows that white Guassian noise is the worst possible kind of
noise.
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Chapter 16

16.1-1

16.1-2

16.1-3

16.2-1

16.2-2

3

212 3 (2)=(8)+(2)+()-(3)
Jj=

20482 1+423+23x11+23x77 = 2048

(a) There are (;’ ) ways in which j positions can be chosen from n. But for a temnery code, a digit can

be mistaken for two other digits. Hence the number of possible errors in j places is
. { ] .
(5)3-1 or 37234 3 (Jj2/ >3 2 X (7)2/
Jj=0 J=0
(b) (11,6) code fort =2

3 2(8)+(1')2+(2')2% =14224220=243

This is satisfied exactly.

For (18,7) code to correct up to 3 errors
22 2 () o 2 2(8)+(1)+ )+ ()
J=0

18! 18! 18!
+

Tt oTe t aye s 18+ 1534816 =988

2! = 2048
Hence

3
2> £()
J=0
Clearly, there exists a possibility of 3 error correcting (18,7) code. Since the Hamming bound is
oversatisfied, this code could correct some 4 error patterns in addition to all patterns with up to 3 errors.

GHT =[1, P] [P ]

Inm
=P®P
=0

¢ = dG where d is a single digit (0 or 1).
Ford =0

e=0[111]=[000]
Ford =1

c=1[111]=[111]
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16.2-3 ¢ =dG where d is a single digit (0 or 1).
Ford =0
c=0{11111}=[00000]
Ford =1
e=1{11111]={11111]
gl:t:ztel (i:‘ this code a digit repeats 5 times. Such a code can correct up to two errors using majority rule for

16.2-4 0 is transmitted by {0 0 0] and 1 is transmitted by [1 1 1]
(a) This is clearly a systematic code with

G=[111]
16.2-5 (a)
100 - 01 )
010. 01 1
G=|........ P= Note that m=1
000---11
tm— vt ]
Ix I 4
(b
Data word Code word
0 0 0j0 0 O O
6 0 1{0 0 1 1
0 1 00 1 0 1
0 1 10 1 1 O
1 0 01 0 0 1
1 0 11/1 0 1 O
1 1 01 1 0 O
1 1 141 1t 1 1

(c) This is a parity check code. If a single error occurs anywhere in the code word, the parity is violated.
Therefore this code can detect a single error,

(d) Equation (16.92) in the text shows that cH” = 0.
Now
r=c®e
and
tHT = (c@e)HT =cHT @ el = eHT
If there is no error ¢ =0 and

rHT =eHT =0
Also
P
H = ] Butsince m=1, I,, =[1]
-Im
and

H

1
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If there is a single error in the received word r, ¢ has a single 1 element with all other elements being 0.
Hence
rHT =eHT =1 (for single error)

16.2-6
Data word Code word
0 0 0[O0 G 0 0 0 O
¢ 0 11 1 0 0 0 1
6 1 0/1 11 0 &t O
01 140 0 t 0 1 1
1 0 0j0 1 1 1 0 1
1 6 1}1 0 1 1 6 O
1 1 0|1 0 0 1 1 1
1 1 170 1 0 1 1 O

From this code we see that the distance between any two code words is at least 3. Hence dyy,;, = 3.

16.2-7
Data word Code word
0 0 0[O0 0 0 0 0 O
o 0 1(0 0 1t 1 1 0
01 00 1 01 0 1 Observe that dpg;, =3
0 1 14{0 1 1 0 1 1
1 0 0|1 0 06 0 1 1
1 0 1}/1 0 § 1 0 1}
1 ¥ 01 1 6 1 1 O
1 1. 1]t 1 1 0 0 0

16.2-8 HT isa 15x4 matrix with all distinct rows. One possible H T is:

IRER!
1110
1101
1100
1011
1010
1001
HT ={0011 =[’]

0111
0110
0101
1000
0100
0010
(0001
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[100000000001111]
010000000001110
001000000001101
000100000001100
000010000001011
G=[I,P]=|000001000001010
000000100001001
000000010000011
000000001000111
000000000100110
[000000000010101]

Ford=10111010101
¢c=dG={10111010101]G=101110101011110

162-9 (a)
[111]
1
100111 :o?
G=|o10110 & HT=]00
001101
“KJ“;“ 010
1001
(b)
Data word Code word
0 0 0|0 0 0 0 0 0©
0 0 1/0 0 1 1 0 1
0 1 0/0 1 0 1 1 o
0 1 1]/0 1 1 0 1 1
1 0 0|1 0 0 1 1 1
1 06 1{1 0 10 1 o
1 1 0f{1 1 0 0 0 1
1 1 1{1 1 110 O

(¢) The minimum distance between any two code words is 3. Hence, this is a single error correcting code.
Since there are 6 single errors and 7 syndromes, we can correct all single errors and one double error.

@ s=eHT
e s
1 0 0 0 0 01 1 1
0 1 0 0 0 0|1 1 0O
0 01 0 0 O0/|1 0 1
0 0 0 1 0 01 0 0O
0 0 0 01 0l0 1 0
0 0 0 0 0 1{0 o0 1
1 0 0 1.0 0{0 1 1
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(e)

r s e c d

101100 110 010000 111100 111
000110 110 010000 010110 010
101010 0600 000000 101010 101

16.2-10 (a) done in Prob. 16.2-7

0117
101
110
b T,
®) H 100
010
001
e s
100000 011
010000 101
six single errors 001000 110
000100 100
000010 010
000001 001
1 double error 100100 111
16.2-11
1000101
G-[l P]- 010011}
kT 6010011
0001110
c=dG
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16.2-12

SPIR
00o0o| (0000000
0001 |0001110
0010 0010011
0011 0011101
0100 0100111
0101 0101001
0110 0110100
0111 0111010
1000 (1000101
1001| [1001011
1010 [1010110
1011 [1011000
1100 |1100010
1101 1101100
1110 1110001
(1111 |1111111]
e ] [ g]
0000001 001
0000010 010
0000100 100
0001000 110
0010000 011
0100000] [111
(1000000 [101]

s=eH”

s=rHT where r = received code

c=r®e

¢ = corrected code

=|110

1017
111
011

100
010

001]

We observe that the syndrome for all the three 2-error patterns 100010, 010100, or 001001 have the same
syndrome namely 111. Since the decoding table specifies s = 111 for e =100010 whenever e = 100010
occurs, it will be corrected. The other two patterns will not be corrected. If for example e = 010100
occurs, s =111 and we shall read from the decoding table e = 100010 and the error is not corrected.

If we wish to correct the 2-error pattern 010100 (along with six single error patterns), the new decoding
table is identical to that in Table 16.3 except for the last entry which shouid be

e

s

010100 111

16.2-13 From Eq. on P.737, for a simple error correcting code
2"*2n41or 2" 2n+1 - n-82logy(n+1)

This is satisfied for n212. Choose n=12. This givesa (12, 8) code. H T is chosen to have 12 distinct
rows of four elements with the last 4 rows forming an identity matrix. Hence,
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G =[l, P)

0011 |

0101 100000000011

0110 010000000101

0111 » 001000000110

1001 f 000100000111
HT= (1010 G= 1000010001001

1011 000001001010

1100 | | 000000101011

1000 | 000000011100

0100

oot1o | (f

0001 | |

The number of non-zero syndromes = 16—1=15. There are 12 single error patterns. Hence we may be
able to correct 3 double-error patterns.

) e
0000 000000000000
0011 100000000000
0101 0:0000000000
0110 001000000000
0111 000100000000
1001 000010000000
1010 000001000000
1011 000000100000
1100 000000010000
1000 000000001000
0100 000000000100
0010 000000000010
0001 000000000001
1111 100000010000
1110 001000001000
1101 000000010001

16.2-14

Data word | Code word
00 000000

01 011011
10 101110
11 110101

The minimum distance between any two code words is dp;, =4. Therefore, it can correct all 1-error
patterns. Since the code oversatisfies Hamming bound it can also correct some 2-error and possibly some
3-error patterns.
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G =[l, P)

0011 |

0101 100000000011

0110 010000000101

0111 » 001000000110

1001 f 000100000111
HT= (1010 G= 1000010001001

1011 000001001010

1100 | | 000000101011

1000 | 000000011100

0100

oot1o | (f

0001 | |

The number of non-zero syndromes = 16—1=15. There are 12 single error patterns. Hence we may be
able to correct 3 double-error patterns.

) e
0000 000000000000
0011 100000000000
0101 0:0000000000
0110 001000000000
0111 000100000000
1001 000010000000
1010 000001000000
1011 000000100000
1100 000000010000
1000 000000001000
0100 000000000100
0010 000000000010
0001 000000000001
1111 100000010000
1110 001000001000
1101 000000010001

16.2-14

Data word | Code word
00 000000

01 011011
10 101110
11 110101

The minimum distance between any two code words is dp;, =4. Therefore, it can correct all 1-error
patterns. Since the code oversatisfies Hamming bound it can also correct some 2-error and possibly some
3-error patterns.
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(®)

[1110]
1011
1000
T_ cenT
H 0100 and s=eH
0010

0001

e s
100000 | 1110
010000} 1011
6 single error patterns gg;?gg ;233
000010 | 0010
000001 | 0001
110000 | 0101
101000 { 0110
100100 | 1010
7 double-error patterns 100010 | 1100
100001 | 1111
011000 | 0011
010010 | 1001

2 triple-error patterns { : g ?: (l) : ? : ‘l) :

16.3-1 Systematic (7, 4) cyclic code
glx)=x+x+1
Fordatal111  d(x)=x*+x%+x+1

2 +x+l)=x° rxiextex?

B +x?+l

Jr3+x-'»l)x6+x"’-o—x“+x3

18 +xtexd

x3

X5+13+12

x3+x2

2 ex+1

x2+x+1

13(33 +X

s, 4 3,2

c(x)=(x3+x+1)(x3+x+l)=x6+x +x +x" +x% +x+1

The code word is 11111111
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Fordaa 1110  d(x)=x>+x? +x

x3+x2

1:3-0»::+l)::'5+x5-o—x4

x6 +x4+x3

$5 4yl

xs +x3+x2

x2

The code word is 1110100
A similar procedure is used to find the remaining codes (see Table 1).

(b) From Table 1 it can be seen that the minimum distance between any two codes is 3. Hence thisis a
single error correcting code.

d c
1111 { 1111111
1110 1110100
1101} 1101001

1100} 1100010
1011 ] 1011000
1010 1010011
1001 1001110
1000 | 1000101 Tablel
6111 0111010
0110 0110001
0101/ 0101100
0100 0100111
60114 0011101
0010} 0010110
0001 0001011
0000 ) 0000000

(c) There are seven possible non-zero syndromes.

x"+x+1
for €=1000000 x3+x+0;6
xS +x*+xd
texd
2 +xlex
x3+x2+x
X3 +x+1
x? +1
s=101

148



The remaining syndromes are shown in Table 2.

e s
1000000 | 101
0100000 | 111
0010000 110
0001000 | o011  1edle2
0000100| 100
0000010) 010
0000001 | 001

(d) The received data is 1101100

r(x)=x8+x% +x3 452
,1:3-t»x+l)x6+xs +x3 +x?
x5 exteyd
S+xt +x?
x5 -'-x:’-lr.):2
x*+x3
xt  4xl4x
13+X2 +Xx
s(x)=x2+l ' x’ x+1
s=101 52 +1
From Table 2
e=1000000

c=r®e=110110081000000= 0101100

Hence d=0101

1632 glx)=x""+x?+x"+x8+ x5 4341

o(x) = d(x)g(x)
1.
d;=000011110000, dy(x)=x"+x%+x%+x*
d;=101010101010, dz(x)ax"+x9+x7+x5+x3+x
e B g2, 11,9, 8. .7 4
(x)=di(x)g(x) = x"2 +x' T4 xP3axt2 0t 294 xB a7 4
and
=00001100011101110010000
cp(x) =dy(x)g(x) = x2 +xB 4 x! T 424 xPaxb s S ext e xd 42?4 x
and

c;=100011031010000100111110
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x2+1
16.3-3 x+1x3+x2 4 x+1

x3+x2

x+1
x+l

0

Hence x3+x2+x+1=(x+l)(x2+l)=(x+l)(x+l)(x+l)=(x+l)3

x? +x+1

16.34 x+l)x5+x‘+x2+1 Hence x

xs+x4

x2+1

X2+X

+
+

* ™
off 3

5+x"+::2-'»1=(J:+1)(x‘+x-t»l)

Now try dividing x* +x+1 by x+1, we get a remainder 1. Hence (x+1) is not a factor of (x“ +x+ l) .

The 2™-order prime factors not divisible by x+1are x? andx? +x+1. Since (x4 +x+ l) is not divisible

by x2, we try dividing by (x2 +x+ l) . This also yields a remainder 1. Hence x

4 4+ x +1 does not have

either a first or a second order factor. This means it cannot have a third order factor either. Hence

5

16.3-4 Try dividing x” +1 by x +1

x6+x5+x‘+x3+x2 +x+1

x+l)x7+l

x7+x6

x°+l

x6+x5

x5 +1

x5+x4

x4l

2iex’
x4+l
P’

x2+1

x2+x

x+]
0

x +x4+x2+l=(x+l)(x‘+x+l)
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Therefore (x7 +l)=(x+l)(x6 +x8+xt+xd+x? +x+l)

Now try dividing (x6 +x0ext et el xs l) by (x+1). It does not divide. So try dividing by
(x* +1). 1t does not divide. Try dividing by (x? +x+1). It does not divide. Next try dividing by
(x*+1). It does not divide cither. Now try dividing by (x> +x+1). Itdivides. We find

(x6+x5+x4 +x3+x2+x+l)=(x3+x+l)(x3+x2 +l)

Since (x3 +x2+ l) is not divisible by x or x+1 (the only two first-order prime factors), it must be a

third-order prime factor. Hence
x7+1 n(x+l)(x2 +x+1)(x2 +x? +1)

16.3-6 For a single error correcting (7, 4) cyclic code with a generator polynomial

gx)=x3+x2+1
k=4 n=7

ka-l g(x)
%2 g(x) ng(x) x:+x:+xz
N g(x) - X" +x +x

x g(x)| [x*+xP4x

g(X) x3+x2+1

-

glx)

Hence
1101000
,_[o110100
“loo11010
0001101

Each code word is found by matrix multiplication ¢ = dG’

(1101000]
0110100
=[0000 =0

c=[0000] | 5511010[" 2000000

(0001101
ﬁlonooo'
0110100
0011010
yoollod

c=[0001] = 0001101
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The remaining codes are found in a similar manner. See table below.

d c
00000000000
0001 [0001101
00100011010
00110010111
01000110100
01010111001
01100101110
01110100001
10001101000
10011100101
1010 (1110010
1011 (1111111
110011011100
11011010001
11101000110
1111{1001011

163-7 g{x)=x>+x2+1

The desired form is
r b
|000"'°h1b1h1"'hm
0100 - -0hyhyhyy - - h»q

0010 - - Ohyhyhy - - - Fm,

0000 - - Vhy by by - - - by,
[ 7 j

(kx k) (kxm)

The code is found by using c=dG
Proceeding with matrix multiplication, and noting that

0+40=0, 0+1=1+0=1 1+1=0 and 0x0=0, Ox1=1x0=0, 1Ixi=1

we get
1000110
0100011

as=[1111] 0010111 =[1111111]
0001101

cs=[1110]G=[1110010]

and so on.
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d c
111111111111
11101110010
1101 {1101000

11001100101
1011 /1011100
1010(1010001
1001 1001011
100071000110
01110111001
0110/0110100
01010101110
01000100011
0011{0011010
0010 (0010111
0001 |0001101
0000 /0000000

These results agree with those of Table 16.5

16.3-8 (a)
1011000
“loto1100
0010110
0001011
(b) The code is found by matrix multiplication. c=dG’
In general gx)=gix" 4 gx"* hg, i

For this case gai=) g=1 g3=0 g4=1
Since My = g3, My = 83, hy; = g4, the fourth row is immediately found. Thus, so far we have

- -

0001101

Next, to get row 3, use row 4 with one left shift.

0011010
0001101

The 1 is eliminated by adding row 4 to row 3.

0010111
0001101

Next for row 2, use row 3 with 1 left shift.

153



16.3-9

0101110
0010111
0001101

The 1 is eliminated by adding row 4 to row 2.

0100011
6010111
0001101

Next for row 1, use row 2 with 1 left shift.

1000110
0100011
0010111
0001101

This is the desired form.

¢ d
00000000000
0001 (0001011
0010 (0010110
0011/0011101
0100{0101100
0101 (0100111
0110(0111010
0111{0110001
10001011000
1001 (1010011
10101001110
10111000101
11001110100
1101 1111111
1110({1100010
1111/1101001

(c) All code words are at a minimum distance of 3 units. Hence this is a single error correcting code.

g(x)=x3+x+1. Hencerowd4is000101 1.

1011000
0101100
“looio110
0001011

’

Row 4 is ok.
Row 3 is left shift of row 4.
For row 2, left shift row 3.

And add row 1 to obtain row 2.

For row 1, left shift row 2.

And add row 1 to obtain row 1.

0001011
oo010110
0101100
0100111
1001110
1000101
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16.4-1

16.5-1

16.7-1

and

1000101
“loroo0111
“loo10110

0001011

The burst (of length S) detection ability is obvious. The single error correcting ability can be demonstrated
as follows. If in any segment of b digits a single error occurs, it will violate the parity in that segment.
Hence we locate the segment where the error exists. This error will also cause parity violation in the
augmented segment. By checking which bit in the augmented segment violates the parity, we can locate
the wrong bit position exactly.

The code can correct any 3 bursts of length 10 or less. It can also correct any 3 random errors in each code
word.

Pry = k2, [N) = 120(¥2%9.12) = 9825 x 1076
4
Pgc = (?)[Q[J?;—"itn =(§3)[Q(./95nss)]4 =9872x10°

To achieve a value 9.872x 107 for Pg, , we need new value E, /A say Ej/N. Then

9872 %107 = kQ( 2_‘.5.5-)= 129{ ,?_Et]
Vo X

Hence

Q(‘/-z—ji) =08227x107°

‘F—Ei =603 -E—b-= 1818
N N

This means E, /A must be increased from 9.12 to 18.18 (nearly doubled).
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