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Chapter 2

2.1-1 LE't us denote the signal in question by get) and its energy by E1/' For parts (a) and (b)

E g == 12

" sin
2

tdt == ~12

" dt - ~12

" cos 211ft == 'If + 0 = 'If

1·" 1 1·" 1 1·"Ef' ;:,;: sin2 t at == - dt - - cos 2t dt = 'If +°= 11'
k 2 k 2 k

(d) Eg =12
" (2 sin t)2 cit == 4 [~12

'T til - ~12
" cos 21 dt] = 4[11' + OJ =4'1f

Sign change and time shift do not affect the signal energy. Doubling the signal quadruples its energy.
same way we can show that the energy of ~'g(t) is k 2 /::II .

2.1-2 <aJ J-:.T == J:(1)2"1 == 2. Ell == J;(1)2dt + Jt2(-1)2dt =:2

In the

1,,/2· f'''/2 f2"
E"~JI = 0 (2)2dt + }"/2 (O)2dt + }:I"/2(_1)2 111 == 411'

Similally. we can show that E:c- JI = 411' Therefore E:C±II == E" + E", We are tempted to conclude that E:dll =
E:c - 1:.'. in general. Let us see.

Ther~fore. in general EZ±!I ..,.. E z + EJI

2.1-3

1 lTD c21TO
P,I == T," c2 cos2(wot + 9) dt = 27< II + cos (2wol + 29)] dt

o 0 0 0

C
2
[lT~ IT,)] C

2
C

2

=2To 0 til ...· 0 co:! (2wol + 29) dt = 2To [To + 01 = T

2.1-4 This problem is identical 10 Example 2,2b. exctlpt that WI <f. i.<J2. In thil!i case. the third intt'gral ill Pg (see p. 19
is not zero. This integral is given by



Therefore

2.1-5

1 /:2 ~:2
Pq = 4' _.2(1) r/t = 64/7

2

(b) P211 = i 12(2t:l)2dt = 4\64/7) = 256/7 112
:l 2 2(c) Peg = - (ct) dt = 64e /7

4 -2

Sign change of a signal does not affect its power. Multiplication of a signal by a constant (. increases the power
by a fartor (.:2.

2.1-6

<a)

(b) 1 J" 1 11</2PII == - VI
2 (t) tit == - dt == 0.5

2". _1< 2". -1</2

(c)
1 jTOIZ 1 {Tv/ 2

Pg == - ,,·~(t)dt = - dt == 1
To -To/2 To J-To/2

2.1-1

(d)

(e)

1 j:.! .,
PIJ:: - (±l)"dt = 1

4 -2

.p _..!.. [2
ff

(.!....)~ tit =!
9 - 2"..10 2r. 3

ThE' integrals of the cross-product terms (when k =1= /.) are finite because the integrands are periodic signals
(mnde lip of sinusoids). These terms. when divided by T - 00. yield zerO. The remaining terms (k = ,.) yield

2.1-8 <a) Power of a sinusoid of amplitude C' is ('2/'J. (Eq. (2.6a)j regardless of its frequency (:.I =1= 0) and phase.
Therefore. in this r.ase P = (10)2/2 = 50.
(b) Power of a sum of sinusoids is equal to the sum of the powers of the sinusoids (Eq. (2.6b)J. Therefore. in

this case P =~ + (l;)~ = 178.

(c) (10 + 2 sin 3t) cos lOt = lOcos lOt ... sin 13t - sin 3/. Hence from Eq. ('l.6b) P = (l~)2 + i ~ ~ == 51.

(d) lOcos 5tcos lOt = 5(eos St + cos 15t. Hence from Eq. (2.6b) P =~ + ¥ =25.

(c) 10 sin 5tcos lOt = 5(sin 15t - sin 5t. Hence from Eq. (2.6b) P = ¥ + 1-:12
== 25.

(f) 1'.'0/ cos .....ot =! [,.../(0+,",0)1 + ri(a-iooIo)I]. Using the result in Prob. 2.1-7. we obtain P = (1/4) + (1/4) = 1/2.

2.2-1 For a real 11

J
"'. .""

-at :2 -2eal
EII = .. ,..,,(1' ) dt= J_....,r. ,Lt=oo

TI'J T/2
P I, I! (-01)2 I \. I! -2eal dg = lin - I' , t = 1m - r t = ex·

T- ..... T -T/2 T-·.,., T -T12

For imaginary fl. let 11 = j:r. Then

1 JTI:2 . 1 fTf2
Pg = 11imT_.... - (1')%1)(1'-1%1) dt = lim - tit = 1

T -T/2 T-",. T , -T/:2

2



• -A
t+

" i:'"
.j. -i

t ~(.t.)

JG ,.... ~
9·(\)

0
,

a '1 ... V"~... 30 3&J -t..

-1
Fic. S2.3-2

Clearly. if 0 is real. ("-al ill neithf!r energy not power signal. However. if a is imaginary, it is a power signal with
power 1.

2.3-1
92(1):= .q(t - 1) + 9;{1 - 1). 9:1(1):= g(t - 1) + 91(1 + 1), .q~(t):= .q(t - 0.5) + ql(t -;. 0.5)

ThE' signal q!)(t) can be obtained by (i) delaying g(l) by 1 serond (replace t with t - 1). (ji) then time-expanding
by", factor 2 (replace I with 1/2). (iii) then multiply wit.h 1..'). Thus 95(t) = 1.5g(~ - I).

2.3-2 All the signals are shown in Fig. S2.3-2.

2.3-3 All the signals are shown ill Fig. 52.3-3

FiC·52.3-3

2.3-4

E- IJ =/~I_q(I)1211t =1'.: ,l(t) lit ;;: Eg • E,(_I) = f:[g(-t)]2 dt =1: i(:r.)ll:r =Eg

E,(I-T) = /~Lq(t _1')j2,J1 = I:l(:r;)tlT:= EI/' Eg(Qr) =1:lq(ot)]2tlt =;1: g2(:r)t/:r; = r.g/O

2.4-1 Csing the fact that q(.T)"'(.T) =g(O)/)(:r). WP. have

(8) (l (b) i"(..:) (c) !h(t) (d) -il>(t - 1) (e) 2:.1:\/)( .... + 3) (f) k6(w) (use L' H6pital's rule)

2.4-2 In these problems remembr.r that impulse "'(3') is located at x = O. Thus. an impulse I>(t - -:-) is located at 'T := I.

and so on.
(8) The impulse is located at .. := I and g(T) at T = t is q(t). Therefore

3



1:g(1")"'(1 - 1") //1" = .q(l)

(b) The impulse "'(1") is at 1" = 0 and R(t - T) at 1" = 0 iii get). Therefore

1: "(T)R(t - T) II.,. = R(t)

Vsing similar arguments. we obtain
(e) I (d) 0 (e) r:l (f) 5 (K) g(-I) (h) _p'2

2.4-3 Leltjn~ nl == .1'. we obtain (for (J > 0)

J
~ 1!~ 1

jp(t)li(at) dt = - tIJ(:')l'(x)dx = -.p(0)
_.,., a _."", a a

Similarly for (J < 0, we show that this integral is -~tIJ(O). Therefore

!
~ 1 1 J....

.. "" jp(t)"(at) tit = j;j41(0) = j;;i -"JU tIJ(t)6(t) dt

Therefore

h(at) = 1..,"(t)
la

2.5-1 Tri\'ial Take the derivati\'e of le: 2 with respect to (; and equate it to zero.

2.5-2 (a) In this case E% = Jol
dl == 1. and

1 'll III(. = - .q(t):r(I) rlt = - t dt = 0.5
E% • 0 ) 0

(b) Th\ls.q(t) ~ 0.5.T(/). and the error ret) = / - 0.5 over (0 ~ t ~ 1). and zero outside this inter\'ui Also Ell
and E. (t he el1erg~' of the eITor j are

The error (t - 0.5) is orthogonal to .r(l) hecause

11

(I - 0.5)(J)dt =0

~ote t hnt Ell = /.2 E% + E.. To t'xplain these results in terms of vector cOllcepts we observe from Fig. 2.15
that the error vector e is orthogonal to the component l?t. Because of this ort.hogonality. the length-square of
g !energy of qU)] is equal to the sum of the square of the lengths of ex and e [sum of the energies of ('~r(t) and
1'(1)1·

2.5-3 In this case Ell = Jol
.q2(1) tit = .ro1 / 2 tit = 1/:3. and

111 11

(;=~ .r(t).q(t)dt:::3 I ,it = 1.5
Ell 0 0

Thus. :r(I) ~ 1.59(1). and the error r(1) = :r(t) - 1.59(1) = 1 _. 1.5t over (0 ~ t ~ 1). and zero outside this

interv:.!. Also E. (the energy of the error) is E" = fol(J - 1.5t)2 dt =1/4.

2.5-4 (a) In this case Ez = J:sin 2 27rtdt = 0.5, and

1 11

1 11

(. =~ .q(t):r(t)dt = -0 tsin 27rtdt = -l/rr
Ez a .5 0

(b) Thus. 9(t) ::::: -O/lt):r(t). and the error I'(t) = t + (lIlt) sin 2rrt over (0 ~ t ~ 1). and zero outside this
interval. Also E!I and E. (the energy of the error) are

4



E g = t g2(f) (It = f' f2 dt = 1/3 a.nd E~ = f'lf - (l/w) sin 27Tt)2 df = ~ - 2~2
Jo.lo Jo

The error It + (l/w)sin 21l'tl is orthogonal to .r(t) because

11

sin 27Tt!t + (l/1l') sin 27T'Jdf =0

Note that E g = (,2 E z + E~. To explain these results in terms of vector concepts we observe from Fig. 2.15 that
the errol vector e is orthogonal to the component ex. Because of this orthogonality, the length of f [I'nergy of
.q(t)l is equal to the sum of the square of the lengths of (~X and e [sum of the energies of ex(t) and dt)j.

2.5-5 (a) If x(f) and lI(t) are ort.hogonal. then we can show the energy of x(t) ± 1/(t) is E z + E".

f:, IX(f) ± 1/(t)1
2

tit =1~ Ix(t)1
2

dt +1: 11I(t)12
dt ±1:x(f)1/(t) df ±I: xO(f)y(t) dt (1)

=f: IX(f)I' dt +f: ly(t)1
2

dt (2)

The last rf'Sult follows from the fact. that because of orthogonality, the two integrals of the ('ross products
.r(f)lI°(t) and .r"(t)lI(f) ale zero [see Eq. (2.40»). Thus the energy of x(t) + lI(f) is equal to that of .T(t) - y(t) if:r(f} and !1ft) arE' orthogonal.
(b) Csing similar argument. Il,e can show that the energy of clx(f) + (~2!1(t) is equal to that of ('I X (I) - ('211(1) if
,.(t) and 1/(1) ale orthogonal. This energy is given by h12E", + 1(.'212 EI/'
(c) If zit) = "(f) ± lI(t). then it follows flom Eq. (1) in the above derivation that

E. = Ez + E" ± (Ez " + E"z)

2.1i-6 gl (2. -1). 1;2( -1. 2). g:l(O. -2). 1;4(1. 2). 1;5(2.1). and g6(3,0). Fl'om Fig. 52.5-6. we sec that pairs (g:\. gel·
(g 1. g4) and (g2. g~) al E' orr hogona!. We can verify this also analytically.

IPg. S:U-6

1:1 . 1;6 = (0 x 3) + (-2 x 0) =0

11 . 14 = (2 xl) + (-1 x 2) =0

I' . 1;5 = (-1 x 2) + (2 xl) =0

\".'1' can show that the cOl'I'esponding signal pairs are also orthogonal.

1': In(t)Ilf;(f)tit =1:[-:r2(t)J!3X 1(t»)dl =0

!:ql(t).q~({ltlt =!.~ ['lxl(') - T:l(t)][r.l(t) + 2X2(t)Jdt =0

f: .Q2(t)1l5(f) tit == I:I- T l(f) + 2T2(t)J!2.Tl(t) + :T2(t)ltlt = 0



2.6-}

(1)

(3)

2.8-1

In deriving these res'llts, we used the fact that J::' :r~dt =L: x~(t)dt = 1 and L: 71 (t)Z2(t) dt = 0

We shall compute "n using Eq. (2.48) for each of the 4 cases. Let us first comput.e the energies of all the signals.

E~= 1Isin22",tdt=0.5

In the same way we find Erl! = Ern = E
II3

= Ell. = 0.5.
t:sing Eq. (2.48), the correlation coefficients fol' four cases are found al:i

J I( rsin2",tsin4",tdt=0 (2) I t(sin21rIH-Sin2",t)dt=-1
(05) 0.5) ./0 y'(0.5)(0.&j 10

J I (I 0.707 sin 2"'tdf = 0 (4) J I [1°'& 0.707 sin 21f'tdt _ t O.707sin 2"'tdt] = 1.414/",
(0.&)(0.5) 10 (0.5)(0.5) ° 10.5

Signals 3'(f) and .Q2(t) provide the maximum protection against noise.

Here To = 2. so that ....0 = 2"'/2 ="'. and

""
g(t) =a·o + L I1n cosn."" + bn sin n",t

n=1

where

Tht'l'efol'e

211
4( l,n

an =? t
2

cosn"'tdf = ~ ~ .
- -I 1r n

II" = ~ t t
2

sinn"'tdt::: 0- 1-1

1 4 "". (_I)n
Qlt) = - + - ~ - cosTI1rt. 3 7:"2 ~ n2

"=1

- 1 ~ t ~ 1

Figul't' 52.8-1 shows q(t) = t
2

for all t and the conesponding Fourier series l'epreS('nting q(t) O\'er 1-1. 1).

,"'"
.'

The powel' of g(t) is

1/1 1Pg =- t 4 dt =_
2 -1 5

Moreover. from Par5eval's theorem [Eq. (2.90)J

2 ~ C~ (1)2 1~ (4(_1)")2 1 8 ~ 1 1 8 1
P

g =Co +~ T = 3 + 2L- --;2;;'2 =9 + ;4~ n 4 = 9 + 90 = 5
1 "=1 n=1

(b) If the JV-tt'rm Fourier !lit'ries is denoted by :r:(I), then

!'I-I
1 4 L (_I)"

x(f) =- + "2 ~ cosn",'
3 '" n

'l=)

Tht' power P~ is required to be 99%Pg ::: 0.198. Therefol't'

N-l

1 8 L 1Pr = - + "'7 4" = 0.198
!) "'~ II

n=1

6



For N = 1. P~ = 0.1111: fOl· N :: 2. Pz :: 0.19323. For N = 3. P~ = 0.19837, which is greater than 0.198.
Thus. 11/ = 3.

2.8-2 Here To = 2w. so that Wo = 2w /2w :: 1. and

.....,

get) = 0.0 + La" cosn' + b" sinnt
"=1

where

1 f"0.0 = 2lf tilt = O.
-"

Therefore

2 f"0" = 21l' tcosfltdt:: 0,
-"

q(t) = 2(_1)"+1~ lsinfl1.
L-n.
" .. I

2 f'" 2(-1)"+1
b" = - t Sin TI t dt = ----'---

211' _" n

Figme 52.8-2 shows g(f) = t for al1 f and the corrp.sponding Fourier series to represent get) over (-w, 1l').

Fig. S2.8-2

The power of qft) is

1 j" 2 ;r2Pg ::: - (f) dl =-
21:' 3

-."

~Ioreo\'e[. from Parseval's theorem [Eq. (2.90)]

(b) If the ,\"-tptm FOlll'iln series is denoted by .r(f). then

....
:r.(f) = 2( -1 )"+1 L *sin mrt

" ... \

The power P", is requirt'd to be a.9D x *= 0.311'2. Therefore

N
1",4 .J

P", = 2' L.- ;;2 =0.311'"
"_I

For.\' = 1. P", =2; for S = 2. P", = 2.5. for N = 5. P~ = 2.927. which is less than 0.371'2. For N = 6. P", =
2.9k25. which is great.er than 0.31l'2. Thus. N =6.

2.8-3 R('call that

1 j T
O/2

ao =T: .q(l.) dt
o -To.'2

2 fTON
0" = T: .q(t) cos n-.Jot dt

o -To/2

2 fron
I,.. = - g(l)sin fl..:ofdt

To -To.'2

..,

(la)

(1b)

(Ir.)



(2a)

(2b)

Recall also that cos "..Jot is an even function and sin "wot is an odd function of t, If get) is an even function of
I. then ,q(l) cos ""';0' is also an even function and g(t) sin n ....o! is an odd function of t. Therefore (see hint)

2 (To/2

no = To Jo .q(t) dt

4 [TO/2
a.. = - g(t)cos 'fI;"iotdt

To. °
I,.. = 0 (2r.)

Similarly. if .q(t) is an odd function of t, then g(t) cos "wot. is an odd function of t and get) sin "Wot is an even
function of t, Therefore

(3a)

(3b)

110 = n'n =0

41TO/2

b" = To" ,,(t) sin ll;.,/ot dl
o 0

Observe that. because of symmetry. the integration required to compute the coefficients need be performed over
only half t he period.

(a) To = 4. ..Jo =~ = ~. Because of even symmetry, all sine terms are zero.2.8-4

""-

g(t) = 110 + L 11" cos (n
2
1r t)

n=1

IJo = 0 (by inspection)

an = ~ [1 1

cos ('fIz7r I) dl -12

cos C; I) ill] = n~ sin '~1r

Therefore, the Fouriel series fOI l1(t) is

. 4 ( 1r1 1 31rt 1 51l't 1 71rt )
q{t) = - cos- - -cos- + -cos- - -cos- + ...
. r. 2 3 2 5 2 7 2

Here lIn = O. and Wt' allow C" to take negati\'e values. Figure 52.8·4a shows tht' plot of Cn .

(b) To = JO:r, ...·0 =~ = i. Bt'cause of even symmetry. all the sine terms are zero.

g(t) = no +t n" cos (~t) + lin sin (~I)
n=1

no = ~ (by inlipectioll)

lin =..!.. {" cos (!2. t ) tit = ..!.. (~) sin (!!:t) I" = ~ sin (~)
lO1r i-" 5 51r 'fI 5 _if 1rTl 5

II" =..!.. {" sin (!!:t) tit =0 (integrand is an odd function of t)
101r i-" 5

Hele b" =0, ano we allow Cn to tl\ke negative values.
shows t he plot of en.
(c) To = 21r, ""'0::; 1.

Note that Cn =11" for n = 0, 1. 2. 3, . ", Figure S2.~·4h

"',
,q(t) = 110 + 2: a.. COS7lt + II" sin 'fit

n::l

112
" In'n = - -2 cosntdl = O.

1r 0 1r

with 110 =0.5 (by inspection)

112
" t 1lin = - - sin nt dt =--

1l' 0 21l' 1rTl

amI

() O• 1(. 1'2 1 '3 1 '4 )g I = .:> -;- lim I + 2 5111 I + 3sm I + 4sm I + ...

= 0.5 + ;. [cos (t + ~) + ~ cos (21 + ~) + ~ COli (3t + i) + ' ..J

8
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~ ., • 5 (, w..-
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-t
• 2. .. " lao

""'~

O'~
ct Sf JtIt\

() ...,.
(e)

, yo cJ-. tJ;J -qC'

FiS. S2.8-4

Thl' reason for vanishing of the cosines terms is that when 0.5 (the dc component) is subtracted from 0(1). the
remaining function has odd symmetry. Hence, the Fourier series would contain de and sine terms only. Figt.:re
S:2.8-4c shows the plot of en and 8n.
(d) To = 1r . .o.IO = 2 and .q(t) = ~t.
flO :: 0 (by inspec-tion).
lin =0 (71 > 0) because of odd symmetry.

41"14 4 . 2 (2 . 71'n 1rn)
lIn = - -'sm2ntdt = - -sm - - eos-

1r 0 71' 1rn 71'n 2 2

( ) 4'?t 1. 4 4. 6 1. 8.q t ;; --:; sm. .... - Sin t - - sm t - - sm t + ...7r- 71' 911'2 271'

. 4 ( 1r) 1 ( r.) 4 ( 71') 1 ( 7r)= ...,.. cos 2t - - + - cos 4t - - + - cos 6t + - + - cos 8t + - + ...
7r~ 2 7r 2 911'2 2 1r 2



Figure S2.8-4d shows the plOl of C" and 0".
(e) To "" 3. ""'0 = 2'71'/3.

120 = l-ll t tit = !
3 6. 0

21
1

27'71' 3 2'71'71 271'11 2'71'''
a" = - t cos --tlit == --[cos -- + -- sin -- - 1]3 0 3 271"2,,2 3 3 3

21
1

• 2mI' 3.. 27T7I 27Tn 2'71'''
II" = - t Sill --tdl =-- Ism -- - -- cos --]3 0 3 2'71'2,,2 3 3 3

Therefore Co = i and

C 3 [ 2 4'71'2 n 2 2 271'7/ 47T7'. 2To'7I
"= 271'2 71 2 \ + -9- - cosT - T sm 3 (

1lm cos l!.!l - sin~ )-1 -I 3 a
and 6" = t.an 21!.!! fu. ~

cos :r + 3 sm :l - 1,

2.8-5

(f) To = 6. ..Jo = 7T/3. 1&0 = 0.5 (by inspection). Even symmetry; b" :0: O.

4 r, fl7l'(/" ::': 6 Jf) glt) cos T lit

2 [1 1

71'71' [2 1111]= - cos - lit + (2 - t).:05 -t fil
3 0 3 1 3

6 [ml' 2fl7l']= -- t05- - cos--
71'2 n 2 3 3

. • 6 ( 71' 2 1 5'71' 1 7~ )
q II I ~ D.el + - cos - I - - cos To'l + - cos - t T - cos - t + ...

• 1r 2 3 9 25 3 49 3

Oh~t>rve Ih?l even hl\rmonics vanish. The reason is that if the d.: (0.5) is subtracted from q(f). the rt'~;ltlting

function has half-wan' 5ymmt'lry. (See Prob. 2.8-6). Figurc S2.8-4f shows the plot of C".

An I'\'en funct ion g.1 t) nno all odd funct ion g,,(I) ha\'e the propcrty that

~,,(f) = q.(-f) and 110(1) = -go! -I) (1)

En', ~ sigllill .q( I) ran be expressed as a sum of cven and odd components bE'C8USe
q(t) =! [aU) .....q(-I)] + ~ [g(t) - 9(-t))

Or, , .. '.... ...
.v~n odd

From the definitions in Eq. (1). it can be seen that the first component on the right-hand side is an even
function. while the second compont"nt is odd. This is readil)' seen from the fact that replacing t by -t in the
first component yiE'lds thE' same function. The same manf'uver in the serond component yields the nE'gative of
that component.
To find the odd and the (!ven components of .q(t) = l1(t). \\'e have

.q(t) =g.(t) + .!lo(t)

whcl'" [from Eq. (1)]

and
1

go(t) = ! I,/(t) - 7/(-t)) = 2sgn(t)

The even and odd components of the signal '1 (t) are sht)wn in Fig. 82.8-5a.
Similarly. to find the odd and the even components of ,q(t) =e-Cltu(t), we have

.q{t) = .q.(t) + 90(#)

and

10



G.-s ~elt..) 9 c (t)

c·S

c -t~ I 0
t~

-c·s
(~)

Fig. S2.8-li

fJo(t) = ~ [,,-411/(1) - r..,It/(-tl]

The eVPIl and odd l"omponents of the signal ,,-41,,(f) are ~ho\\'n in Fig. 52.8-ab.
For fJ(I) = ,..". we have

"jt :=: .9.(t) + .90(t)

nnd

2.8-6 (a) For half wave symmetry

( . TO)n(t) = -g , ~ "2
and

2 l TO
2 l TO

/2 lTOand fl" :=: T: .9(t)COS71..Jo' dt =7f g(t)C'os71..Jotdt + fJ(') cos '1wiOt dt
o 0 0 0 To/2

Let :r :=: t - To/2 in the second integral. This gives

? [l TO
/
2 l TO/2

. 7i ) ('Ii)]tln :=: ;0 0 gU) cos 11..vOt. dt + 0 .9 (To + 2
0

cos 7l..Jo :r + 2
0

tix

2 [l TO
/

2 l TO

/

2

]:: To 0 g(f) COS71..vo! dt + 0 -.9(X)[ - cos 11wo:r.J d:r.

4 [(0/2
]= To Jo g(f) COS Tli';Ot dt

In a similar way we can show thal

41To
/
2

f'r:=:- g(f)sinn...Jot,ft
To 0

(b) (i) To:: 8......O:=: 7' no = 0 (by inspection). Half wave symmetry. Hence

11



Therefore

{
~ ('2" - 1) n = 1,5.9.13.···

an =
-"2~2 (¥+1) n=3,7,l1,15, .. ·

Similarly

112
t . nr. 4 ( 1171' 1171' 1171') 4 (1171')b" = - -sm-ttlt = - sin- - -cos- =--sin -

2 0 2 4 11 271'2 2 2 2 11 271'2 2

and

.q(t) =

(ii) To = 270. ":0 = 1. no =0 (hy inspection). Half wave symmetry. Hence

"'"
q(f)= l: a"cOSl1t+lJ"sinllt

"=1,,1.5..

(11 odd)

and

=~[ ;-t~~ (-O,JCOSl1f+nSinnf)]"
11'11+.1 0

= ~ [ ~-"~I~ (0.1) - 2 1
001

(-01)]
T.'11+.1 n+.

2 -"/10 00465
= 107l'(11~ + 0.01) (p _. 1) = 11 2 '+ 0.01

(11 odd)

'1"11" = .:. P-1/10 sinl1f tit
71' 0

= ~ [ ;-t~: (-O.lsinnt -ncosnt)]" (n odd)
71' n + . 1 0

== 211 (..-"/10 _ 1) = 1.46111
(n 2 + 0.01) n 2 + 0.01

2.9-1 (a): 10 = 4.....0 = 71'/2. Also Do == 0 (by inspection).

1 :1

D 1 1 "1(",,/2)1 if f -)(",,/2)t it 2. 1171'"= - ('.. I -.. t = -&111-
2w -1 I 1l'J?' 2

(b) To = 1071' .....0 = 211'/1011' = 1/5

In\ ~ 1

.""

.q(t) = L DnrJ~t.

.,,=-"""'-'

where 1 1" -~t j ( .. n7l') 1. (11")D.,. = - (' J" tit == -- - 2; sm - == - Sill ~
1071' " :2?l'11 5 71'n ;)

12



(tA:) # •• )t\
)"

&

(J», ,, ,,
-I ., .... .,.". .,..

~.Pn 'I
II- (<! )

(,4/-#

•• .. 114),.

~a
(d)

,.;~

~

.,

. LJ)n •
qo

•

(e)

(f)

Fig. 82.9-1

(c)
"'"

q(t) = Do + L Dn('.int
• where. by inspection Do =0.5

D 1 12
... t -Jn1dt j"== - -r .=-.

271" 0 271' 271'11
so that

J
IDn !=-2'71'11

and LDn ={i
T

n > 0

11<0

(d) To = 71', "0 = 2 and Dn = 0

...
,q(t) = L Dn(',2nl.

n=-.,..,.

where
1 j"/~ 4t _ ~nt -j (2 ,71'11 71'11)Dn = - _(~ J- dt =- - Sin - - cos -

To _ .. /4 71' 7I'n 7I'n 2 2

13



(e) To = 3.,.)0 = 1,f .

....
q(f) = 2: DnrJ"T t

•

r_,.."

Therefore

where 111.2Jul 3 [_' 2=L (i211Tl ) ]Dn = 3 0 fr-J-r ' dt = 411'2
11

2 r J-r 3 + 1 - 1

• 411 2 n 2 211Tl 411n 211f12+-- -2cos-- -sin-
9 3 3 3

2.9-2

(C) To = 6.,.)0 = 11/3 Do = 0.5
..,..,

'" J.¥!g(t} = 0.5 + L..t Dnr

3 a~

2
~.1

0 1 S 8 fl ... n ....
(Q)

.n: ·n l .lP". ~ •:>
~

$" -, 5-
! ".5

.,
~ C r"I~j.

lit> )
-~ 4 -!1

.3 ..
Fig. 52.9-2

.q(t) = 3cost + sin (5t - i) - 2cos (8t - j)
For a ("ompact trigonometric fonn. all terms must have cosine form and amplitudes must be positive. For this
reason. WE:' rewrit.e g(') as

.q(f) = 3cos, + cos ( 5f - i - ~) + 2cos (8t - i - ,..)
= 3 ("os, + cos ( 5t - 2;) + 2 cos ( 8t _ 4;)

Figure 52.9-2a shows amplitude and phase spect.ra.

(b) By inspection of the trigonometric spectra in Fig. 82.9-2a, we plot the exponential spectra as shown in Fig.
S2.9-2lJ. By inspection of exponential spectra in Fig. 52.9-2a. we obtain

.q(t) = ~(rJt + r- it )+ ~ [r)(St-1f> + r-')(SI-~>J + [r3(St-¥) + e-J(81-¥>}

= ~(Jl + ar-J¥) ,-lSI + (r-i¥) riSt + ~r-Jt + G,..J1f) ('-iSt + (,.i¥) ('-1~1

14



2.9-3 (n)

11'
get) =2 + 2cos(2t - 71") + cos(3t - 2')

= 2 - 2 cos 2t + sin3t

(b) The exponential spectra are shown in Fig. 52.9-3.
(c) By inspection of exponential spectra

g(t) = 2 + [,.(2t- ..) + r.- j (2t- .. )] + ¥[~(.'t-i) + ('-;(3&-t)]

= 2 + 2cos (2t - 'If) + cos (3t - i)
(d) Observe that the two expressions (trigonometric and exponential Fourier series) are equivalent.

..
-7(

Fig. 82.9-3

2.9-4

1 [fT
OI2 jT

O/2 ]
D",=~ !(t)cosn...Joftlt-j !(t)sinn;uotdt

o -Tol2 -Ton

If q',f) is ('\'en. the se('ond term on the right-hand side is zero because its integrand is an odd function of t,
Hen('e. D" is real. In contrast. if qit) is odd. the first term on the right-hand side is zero because its iT'llegranrl
is an odd function of t. Hence. D", is imaginary.

15



3.1-1

Chapter 3

G(.... ) = l:.q(t)/,,-iwtdt= l:g(t)coswtdt-j1:g(t)sin ....·t dt

If 11(1) is an even function of I. lI(t)sin.olt is an odd function of t, and the Sf>cond integral vanishes. Moreover,
q(t) co!'!,.;t is an ('ven function of f. and the first integra! is twice the int.egra! over the interval 0 to oc. Thus
when .q(l) is even

G(w) =21""'.Q(t) coswt dt

Similar argument shows that when q(t) is odd

G(w) = -2j1..... q(t)sin.oltdt

If q(l) is also real (in addition to being e\'en), the integral (1) is real. Moreover from (1)

G(-,.;):: 21..... g(t)cos.oltdt = G(.,,:)

(1)

(2)

3.1-2

3.1-3

He\lce G; ....·) is real and even function of.ol. Similar arguments can be used to prQve the rest of the properties.

Since !e( ••:)! is an even function and 9,,(,.;) is an odd function of w. the integrand in the second integral is an
odd function of ...... and thf'l"efore vanishes. Moreover the integrand in the first integral is an even function of;,,).
and therefore

11"'".q(t) = - IG(w)jcos[wt+9,,(w)]d...•
To 0

For .q(l) =,,-alll(t). G(;,,) =;:;t.;. Therefore IG(w)1 = 1/v';,,)2 + 4 2 and 911 (w) =- tan-I(~). Hence

-alIi"'" 1 [ -I (W)]" = - cos wI - tan - dw
ll' 0 Jw2 +n.:l a

j '''''
G(;,,;) = _"'" q(t)/,,-i

wt
dt

Therefore

and

16



3.1-4 (a)

l
T iT 1 - c-(j",+a)T

G(.. ) = 0 "-atr-j",, dt = ft e-(j",+a)t dt =
... jwJ + a

(b)

3.1-5 (a)

11. /2 4 2 -,'" 2 ··j2",
G(...;) = 4r -J"" tit + 2"-J,,,t dt = - t' . - r.

o I JW

(b)

G(w) = r _!..r-·i..,1 dt +1" !..r.-j"'t dt = ~[cOS;'''7" + W1'SinWT - ]Ji-,. T 0 7" 7"161

This result could also be derived by obsen'ing that g(t) is :lon even function. Therefore from the result in Prob.
3. ]·1

? 1" 2G( ..... ) =.:. Icos ....tdt = -2Icosw7" +wTsinw1' -1J
T 0 1"161

3.1-6 (a)

("",~t2 - 2) sin ....ot + 216101 coS ....of

1ft'

--
G(IAI)

~2~-:~-'-2.
L +

Flp:. S3.1·6

(b) The oeri\'ation can be simplified by oLseJ'\'ing tha.t G(;":)l'an be expressed 8.lt a sum of two gatl! functions
Cd".;) find C~! .... ) fl.S "hown in Fig. S3.1-6. Therefore

1 l' '"" 1 {1' .""11

....1 } !'in 2t + sin tg(l)=- IGI(".;)+G~(..)J,..J dw=- t·' Ilw+ (OJ dw =--...;....-
21f -2 21f -2 -1 1I't

3.1-1 (8)

(b)

1 / ...0 . 1 [1...0 1"'0 ].q(t) = 271' C(".;)rJ..,t dw =211' . G(w)coswJtdw+j G(W) sin wJt dw
-~ -~ -~

Because G(w) is even function. t he second integral on the right-hand side vanishes. Also the integrand of the
first term is an even function. Therefore

17
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() 1 1,",0 W .J. 1 [CostiIJ + twsint;.v)OoIO
g t = - - ('os t;.v <HI = -
. 7f 0 ;.vo 7fWO t2 0

1 .= --2[COS ;,,;ot + wot sm ;.vot - 11
lI';,,;ot

3.1-8 (a)

.'1(t) = i-10olO

r-}wto,.Jwt d;.; = ..!.. /w
o

,.iw(t-to) dw
*7f -wo 2r. -wo

1 j",(t··to) 1"'0 sin wo(t - to) Wo. [ (t t)J= r = = -sine wo . - 0
(2"').i(t - t.o) 11'(1 - to) 7f

-0olO

(b)

g(t) = 2~ [1~'<J .ir·7",t 11..1 + 1"'0 -jci"'t d.Al]

_ 1 j"'IIO 1 j..,t '''''0 _ 1 - cos;.;o'- -r - -(' -
27ft _"'0 27ft 0 7ft

~)
-I C I t:.-.

t'"

rc.c:t ( 't~ c );HL
C' ~ 10 fJ;-

to·..
lc:!)

w-
(L)

Fig. S3.2-1

-SiT

~l,., Co (~) ~et (;~),

(f)

I
I:',

3.2-1

3.2-2

Figure 53.2-1 shows the plots of various functions. The funct.ion in part (a) is a gate function centered at the

Oligin and of width 2. The function in part (h) can be expressed as 6 (.). This is a triangle pulse centered

at the origin and of width 100/3. The function in part (e) is a gate function rect(l) delayed by 10. In other
words it is a gate pulse centpred at 1 = 10 and of width 8. The function in part (d) is a sinc pulse centered
at the origin and the first zero occurring at T = ll', that is at w =5. The function in part (e) is a sine pulse
sinc( f) delayed by lOr.. For the sine pulse sin('(1). the first zero occurs at f =1r. that is at w = 571'. Therefore
the function is a sine pulse centered at ;.; = 1071' and its zeros spaced at intervals of 57f as shown in the fig.
S3.2-le. Thl! function in part (0 is a product of a gate pulse (centered at the origin) of width 10". and a sine
pulse (also centered at the origin) wit.h zeros spaced at intervals of 571'. This results in the sine pulse truncated
beyond the inTerval ±57f (It I ~ 57f) as shown in Fig. f.
The function rect (t - 5) is centered at t = 5. has n width of unity. and its value over this interval is unity. Hence

l
lUI IS'S01 .) - - }wl dt _ 1 - }.Jl _ 1 I - j4.S.., -is.S,,,]

... - r - --f' - - r - r
. 4.5 jw 4.a joAJ

r-
jaw

. . r- jlSw
[ .AI]=_._[,.}.../2 _ ,.-,"'/21 == --:-- 2jsin-

J~ Jw 2
. (.AI) .. "s...=SInC - ,.

2.

18



3.2-3

,..1101 .. • jlOt
:::: -.-12) sm 7.f) :::: Slnc(rof),.

)21r..J

3.2-4 Observl" that 1 + sgn(t) :::: 2u(f). Adding pairs 7 and 12 in Table 3.1 and then dividing by 2 yields the desired
result.

3.2-5 Observl.' thnt

cos (..Jof + 9) :::: ~ [pJ(wel+f) + ,.-j(..,ol+l)]

1 -i' jwet 1 -j' -)"'0':::: 2"'- Po +2 Po I'

Fourier transform of the above equation yields the desired result.
3.3-1 (a)

1
1/(f) ~ 1r'o'(..... ) + -:-
........... )..J

gel) y'
G(w)

Appliclltion of duality propert~· yields

1r/li f) + ..!..~ 21ru( -..J)
}I -...--

• y , 2"9(-"")
G(l)

01

*[hit) + ~J ~ 1/(-..J)_ j'1rt

Application of Eq. (3.28) yields

! [b(-t) __1_] ~ tI(.')
2 )1rt

But "II! is an even function. that is "(-f) = hit). and

1 .
-Ih(f) + L]~ 1/(..J)
2 I Trt

(b)

cos ..Jof~ Tr[h(.,.; + ",",0) + "'(..J - ;""0)1...........- .. ,
g{l) Gt",,)

Application of dualit:y property yields

1r [h(f + "",0) + hit - wo») ¢=> 211' COli (-'"'0..... ) :::: 2r. cos (.....0 .... ), "'.."¥ •

Ge,) 2"11(-"")

Sett ing ":0 = T yields

I:(f + T) + h(t - T)~ 2 cos T .....
(e)

sin ..vo'~ jro[h(w + ..vo) - hew - ;.10)]--..-- .. ,

1/(1) GC"")
Application of duality property yields

.i7r~"'(f + "':0) - h(f - '''/1)] <==> 2rosin(-;.Iow):::: -21r sin(:.Jow)
.. .I",

~ Y

G(l) 2"g(·-..,)

Sct t ing ":0 =T yil"lds



bet + T) - bet - T)~ 2jsin Tw
3.3-2 Fig. (b) .91(t) = .q(-t) and

G 1 (..,;) = G( ·-w) = 2..
2
/r-j"" + j..,;r.-''''' - I]

W

Fig. (c) q2(f) :"q(f - 1) + .9dt - 1). Therefort>

G1 (..,;) = !G("",) + Gl (..,;)]r-j", = !G(w) + G( -w»)e-)""
2r.- J "'=--r-(cosw + W sin.., - 1)w

Fig. (d) .Q1(t) =9(t. - 1) + gJlt + 1)

Fig. (e) .94(1.) =get - ~) + ql!1 + i). and

Fig. (f) q.~(t) can be obtained in three steps: (i) time-expanding .9(1) by a factor 2 (ii) then delaying it by 2
seconds. (iii) and multiplying if by 1.5 [we may interchange the sequence for steps (i) and (ii»). The first step
(time-expansion by a fact or 2) yields

f(~) c::::=2G(2w)= 2~2(r'2"'-j2..;rj2"'-1)

SE'conu step of lime delay of 2 sees. yields

1('-2) 1 (,2,., .? 12", )-,2.. 1 11 ·ft .,2~)2 <==> 2.... 2 (. - .I-"';f - 1 r' = 2"",2' - .I~-' - ('

The third step of multiplying the resulting signal by 1.5 yields

q~(t) = 1.51 ('; 2) ~ 4~2 (l - j2..,; _ ,..-)2"")

o

Fig. 83.3-3

3.3-3 (a)

(
t +T/2) (t -T/2)g(t) :-: reet. --r- - reet --r-

reet (f) ~ Tsine (Wi)
recl (' ±::?'/2) =- Tsinc (W{) p±j",T/2

20



and

G(w) = Tsine (W{) [r.;IoIT/2 _ r.- jIolT/2)

2'T' (WT). wT= J sine T SInT
';4 .~(WT)= -Sin -
W 2

(b) From Fig. S3.3-3b we verify that.

.iI(t) =sin t u(t) + sin(t - 1I')u(t - 11')

!':ote that sin(t - 1I')tl(t - -:r) is sin t,,(t) delayed by 11'. Now. sintll(t)~ t[h(w - 1) - 6(..J + 1)] + 1_1"" and

sin(t - 1I')'J(t - 11')~ {211'. [h(w - 1) - h(w + 1») + _1_... }('-J"'"
J l-w·

Therefore

Recall that g(.1·)"(:r - :To) =g(.TO'lll(:r - :ro). Therefore h(w ± 1)(1 + ('-J"IoI) =O. and

(c) From Fig. 53.3-& we verify that

q (t) = cos t [" (I) - " (t - i)] = cos t'J (t) - cos t II (t - i)
But sinlt - i) = -cost. Therefore

.q(l) = cost I/(t) + sin (t - %) 1/ (t -~)
( • 11' [ ) ») j;.l { :':' I (1 I} -J""- /2G .... ) = -;; I'!(..J - 1 + hi ...· + 1 +-, + :;-: h(,.; - 1) - " .... + 1) + --2 ('

• 1 -,.; -J 1 - ....

Also because q(.T)"'(:r - :ro) = q(.ro)M:r - :ro).

Therefore

(d)

g(t) =('-lItl,,(t) -lJ(t - T)J = ('-""J(t) - (,-"',* - T)

=(-III,,(t)_ ('-oTr.- oCt - T )II{t _ T)

1 -,,7 1
G(.... ) =: -.-- - .!:...-_p-j",T = -:--11 _ f!-Co+.,IoI)Tj

.I..J + 0 .IW + a J ..... + a

3.3-4 From time-shifting propert,v

Therefore

.q(t + T) + q(t - T)~ G(W)r..1oo1T + G(;.I),·-J..,T =2G("... ) eos".IT

We can use this result to derive transforms of signals in Fig. P3.3-4.
(8) Here .q(l) is 8 gate pulse as shown in Fig. 53.3-48.
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.q(t) = reet (~) <=* 2sine(w)

Also T = 3. The signal in Fig. P3.3-4a is .q(t + 3) + .q(t - 3), and

.q(t + 3) +g(t - 3)~ 4sinc(w)cos3w

(b) Here 9(1) is a Iriangular pulse shown in Fig. S3.3·4b. From the Table 3.1 (pair 19)

.q(t.) = D. (4) ~ sinc2 (~)

Also T = 3. The signal in Fig. P3.3-4b is ,q(t + 3) + g(t - 3). and

.9(t + 3) + g(t - 3)~ 2sinc2 (~) cosaw

~.,

FiB. S3.3-4

3.3-5 FrequencY-bhifr ing propel I)' st ates that

The-refore

q(l) sin ~'ot :: 2
1 ~q( I},.)"'Ol + ,q(t)1' -1"'0

1
] = 21. [G(w - ,.:0) + G(,.; - .....0)]

J )

Time-shifting property sta!ps that

Th<>refOJe

Ilnd

'2
1

[q(t ... T) - .9(t - T)] <=* G(..... ) sin T .....
.I

Thf' signal in Fig, P3.3-5 is .q(t + 3) - .9(t - 3) where

.q(t) =reet (D <==* 2sinc(:.I)

Therefore

{I(t + 3) - g(t - 3)~ 2j[2sinc(w)sin3w) = 4j sinc(..... ) sin 3.,.)

:i.3-6 Fig. (8) The signal R(t) in this case is a triangle pulse ~(f,;) (Fig. 53.3-6) multiplied by cos lOt .

.9(t) =~ (2~ )cos lOt

Also from Table 3.1 (pair 19) ~"f;) <==* 7I"sinc2(¥) From the modulation property (3.35), it follows that

(
t ) ,.. {. .. [71"(",) - 10)] . 2 [7I"(W + 10)] }R(t) =~ 2;r cos lOt <==* '2 SlnC· 2 + SInC 2

The Fourier transform in this case is a real function and ~'e need only t.he amplitude spectrum in this case as
bhown in Fig. 53.3-6a.

Fig. (b) The signal.q(t) here is the same as th~ signal in Fig. (a> delayed by 271". From time shifting property.
its Fourier transform is the same as in part (a) multiplied by ,.-j",(2..>. Therefore
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... .... ,D (11-
.,iII'# ......

~(~= - arT'~· '.

,&IW) ,

o
... .......

~)

"" ,.....

~. -t ...

, " < }

...- -t- ....
( D\>

~

0 tr

-if

G( · 1: {. 2 [11'(-<1 - 10)] . 2 [11'(;.,' + lO)]} .-j2"...•. \ = - SInC + SlnC -- "
2 2 2

Thp Fourif'r transform in this case is the sam'e as that in part (a) multiplied by ,,-J2".... This multiplying fllclor
"l"p"f'~ents a linear phllSe spectrum -2ll''';. Thus we have an amplitude spectrum [same as in part (a)i as well as
a linl'ar phase !>pectrum .::G( ...·) = -21r": 11.'> shown in Fig. S3.3-6b. the amplitude spectrum in this CMe as shown
in Fil?: S3.3-6h
1'\ot<': In the above solution. we first multiplied the triangle pulse ~(f.;) by cos lOt and then delayed the result
b.\· 211. This nlf'ans the signal in Fi~. (h) is ('xprefst'd as ~(tz~" ) cos 10(t - 211)."'e could have interchan~ecJ the operation in this particular case. that is. the triangle pulse ~(2~) is first delayed
In- '2r. and then the result is multiplied by cos lOt. In this alternate procedure. the signal in Fig. (b) is expressed
as .:3. ( I 2~" )cos lOt
This inl t'lchange of operation is permissible here only because the sinusoid cos lOt executes integral number of
cvc!es in the interval 2r. Because of this both the expressions are equivalent since cos 10(t - 211') = cos lOt.
Fig. (c) In this case t he signal is identical to that in Fig. b. exc-ept that the basic pulse is reet (2/... ) instead of
a triangle pulse ~(2\)' :'\ow

rect (2~) ~ 211 sinc( ll'w)

t:sing the same argument as for part (b). we obtain

G(",,) = lI'{sinclll'(w + 10») + sinclr.(w - 10)]}r- j
:!,.....

3.3-7 (a)

(w-4) ("'+4)G(...,) = reet -2- + reet -2-

AIs.)

;sine(t)~ rect (~)

Therefore

get) = ~sin('(t)cos4t
• 7i

(b)

Also
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ThE'reforc

g(t) = ~sinc2(1) eos4t
11"

3.3-8 From the frequency convolution property. we obtain

The width propert)' of convolution states that if (;)(x) .. C2(X) = y(x), then the width of u(x) is equal to the
slim of the widths of (')(:r.) and ('2(.'7'). Hence, the width of G(w) .. G(",,) is twice the width of G(",,) , Repeatp.d
application of this argument shows that the bandwidth of g"(t) is nB Hz (n times the bandwidth of g(I»,

3.3-9 (a)

G() jo -JWld iT -J':Jld 2 [ T])4 . 2 (""T)"" = " t - (! t = - ":-' 1 - cos 'J.,' = - SID -.-
-T ° JW ..J:2

(b)

(
t+T/2) (t-T/2),q(f) ::: reet -T-- - rect --T-

rert (f)~ Tsinc (",,[)

(
t ± T/?) (""T) ± 'r '2rect --;p-= <==> Tsinc 2"'" ~ J'"' ,

find

G(..:) =Tsinc ('J.,;) [I'JwT/2 _ ('-J ....T/2j

2 '1" (wT). ""T= J sIDe 2 slll2
j4 . 2 ( ..OT)= -sm -
"" 2

(c)

df, :: Il(f + T) - 26(t) + lI(t - T)
d

The Fourier transform of this equation yields

Therefort!

)4 (""T)G(w) = :;- sin
2 T

3.3-10
A basic demodulator is shown in Fig. 53,3-10a. The product of the modulated signal 9(f)cos;..;01 with 2cos",,0'
yields

g(f) cos ••:o' x 2 cos ""of:.:: 2gft) Co.<;2 ..Jof = .q(f)[1 + cos 2....ot] =g(t) + g(t) cos 2"':01

ThE' product contains the desired g(f) (whose speet rum is centered at"" =0) and the unwanted signal ,q(f) cos 2""0'
with spt-ctmm ! IG(""+2""oj+G(",,-2,,,,0!. which is centered at ±2..Jo, The two spectra are nonoyerlapping because
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Fig. 53.4-1

Ir < .'0 (See Fig, 53.30 10b). We can suppress the unwanted signal by passing the product through a lowpass
filter as shown in Fig 53.3-10a.

3.4-1

Gd..l) =sinc(doo) and G::(w) = 1

Figure 53.4·j shows GI(":). G-z(..:). Hit..:) and Hz(..:). Now

Yd••:) =Gdw)HI(w)

Yz(w) = Gz(w)H2(w)

The spectra YI(":) and Y:z( ) are also shown in Fig. 83.4-1. Because 1I(t) =m(t)1Iz(t). the frequency convolution
property yields }'(..:) = }'l ( ). Yz(w). From the width property of convolution, it Collows that the bandwidth of
1'(..:) is the sum of bandwidths of }'l(":) and Yz(w). Because the bandwidths of YI{w) and Y2(W) are 10 kHz. 5
kHz. respectively. the bandwidth of Y(.... ) is 15 kHz.

3.5-1

Csing pair 22 (Table 3.1) and time-shifting property, we get

This is noncausal. Hence the filter is unrealizable. Also

1.... IlnIH(..:)11 IL.; =1''''''~d .... =00
..:2 + 1 ;.)2 + 1

-~ -~
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htf)

Figure S3.~1

Henr.e t he filter is noncausal and therefore unrealizable. Since h(t) is a Gaussian function delayed by to. it looks
as shown in the adjacent figure. Choosing to = 3v'2k. 11.(0) = r.-4 .11 = 0.011 or 1.1% of it.s peak value. Hence
fo = 3m is a reasonable choice to make the filter approximately realizable.

3.5-2
H(w) = 2 X 1011 ,.--j"'lo

w2 + 1010

From pair 3. Table 3.1 and time-shifting property, we get

I/(f) =('-10~11-lol

The impulse response is noncal1sal. and the filter is unrealizable.

h Lt""
,;

The eXj.>onential delays to 1.8o/t at 4 times constants. Hence to =4/a =4 x 10- 11 =40/<s is a reasonable choice
to make this filtel approximately realizable

3.5-3 FlCm the results in Example 3.16

1 6
11 =- = 10RC

Also HlO) = 1. Hence if ""'I is the frequency where thp. amplitude response drops to 0.95. then

106

IH(""'I)I = =0.95 =* ....1 =3:28.684
v:..Jf + 1012

Moreover. the time delay is given by (see Example 3.16)

fd(W) = _ a => frl(O) = ! = 10-6

"",2 + a2 a

If ..12 is I he frequency where the time delay drops to 0.98% of its value at W = O. then

fd(W2) = 210601" = 0.98 X 10-6 ===> W2 = 142,857
w2 + 1 •

We select the smaller of ""'I and ;,)2. that is w = 142,857, where both the specifications are satisfied. This yields
n frequency of 22,736.4 Hz.

3.5-4 There is a typo in this example. The time delay tolel'ance should be 4% instead of 1%.
The band of Aw =:2000 centerp.d at W = 1011 represents the frequency range from 0.99 x 1011 to 1.01 X lOll. Let
us consider the gains and the time delays at the band edges. From Example 3.16

a = 10'

At the edges of the band
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The gain variation over the band is only 1.99%. Similarly, we find the time delays at the band edges as

and

The time delay variation over the band is 4%. Hence, the t'ransmission may be considered uistortic.nless. The
signal is transmitted with a gain and time delay at the center of the hand, that is at. ;01 = 105. We also find
IH(lOs):::; 0.01 and fd(lOS)::::: 1_-1. Hence, if g(t) is the input. the corresponding output if;

,,(t) == 0.01 g(f - 10-1
)

t...

J

Fig. 83.6-1

3.6-1

n~·) = G(".;j rect (..:::!.....) (' -;(...·to+k.,n ...T)
4r.B

:::::G(".;)rect ( ;oIB)ll-jkSin;olTJr-.1,.,tot
4'11'

This follows from the fart that r'" :::; 1 + :r when .7 « 1. Moreover. G(".;)rert (~) =G(....·) hecause G{..:) j~

bandlimiteJ to B Hz. Hence

l'(~.) =G{;..J)r-;oIto - jkG(....·)r.in.,.;T"-j...t o

:\101'1"0\"1"1. we can show that (see Plob. 3.3-5)

;.l.q(f + T) - g{t - T)J~ G(..... ) sillwJT
.J

Hence

1I(f) =g(f - fo) + ~lg(t - to - T) - g(t - to + T)J

Figure 53.6-1 shows ,q(1} and y(f).

3.0-2 Recall that the transfer function of all ideal time delay of T seconds is ('-j",T. Hence. the transfer function of
the equalizer in Fig. P3.6-2 is

Heq(w) =ao + al('-j""~t + a21·-i2....~t + ... + (1"r-j....,~t

Ideally. we require the equalizer to have

[Heq("';)]desircd = 1 + r,('··,;,.,~t

= 1 _ or- .1.·~t + 02r -.I:lwAt _ (\:l('-j:l"'~t + .. ,+ .. ,

The C'qualizel in Fig, P3.6-2 approximates thif; expression if we select ao == 1. (11 = -I). a:! :.:: oz. "'. an =
(-1)"C\ ".
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3.1-1

Ell =j"" ,q"(t)dt:::;~ (OU ('._t
2

/,,2 Ilt
_"., 271"/7 i-_

Letting ~ :::; ~ and consequently tit :::; ~d:r

E" = -..!-.!!.... j"'"' r-",2/2 dx:::; ..j'f; :::; _1_
2u2 V2 _"" 2V2lfl1 211';;

Also from pair 22 (Table 3.1)

G(w} :::; ('._"2,,,2/ 2

Eg = 2~ 1:, IG(w)1
2

dJJJ ;: 2
1
1f 1:('.-..2",2 d"'J

Letting rr ...· :::; ~ and consequently dw = -Ltlx
vr~ a,~

Ell:::; ...!.._1_ j"'"' 1'-",2/2 d:r::::; ..j2; :::; _1_
271" 11v'2 _"" 21f11v2 '2,,';;

3.1-2 Consider a signal

q(t) = sinc(kt} and G(w):= ~reet (;~)

:1.7-3 Rerall that

".

Tilerefore

Interchanging the roles of gl(t) and .92(t) in the above development. we can show that

3.7-4 In the generalized Parseval's theorem in Prob. 3.7-3. if we identify gl(t} = sine (211'Bt - ,"11') and .92(t) =
sine (211'81 - 717r), then "

1 ( w ) .l..!!.!!!and G2(W} = -reet - ('~
2B 411'8

T hel'f' fore

But rect (~) :::; 1 for 1....·1 $ 271" B. and is 0 otherwise. Hence
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l'I#m

n=m

In evaluating the integral. we uaed the fact that r±j2trlc = 1 when k is an integer.

3.7-5 Application of duality property [Eq. (3.24)] to pail' 3 (Table 3.1) yields

The signal energy is given by

Tht> energy contained within the band (0 to W ) is

E 4 l w - 2o", J. 271" [1 -20Wj
IV= 71" I' ..,"'=--1'

o a

If £11' = 0.99£". then
,,-20\\' =0.01 IV 2.3025 d/ 0.366 H==> .... = -- ra s = -- z(/ a

3.7-6 If q2(1) <==> 04(..:). then the outpul Y(..:) =A(..:)H(w). where H(..;) is the lowpass filter transfer function (Fig.
53.7-6). Because this filter band 1:11 - O. we may express it as an impulse function of area 4r.1i.f· Thus,

Hl're we used the property 9(:r)/)(1') = .q(O)1.>(.1') [Eq. (1.23a)]. This yields

1/(t) = 2A(O)~f

~ex'. because 92(1) o¢::::o:::> A (..:), we have

Hence. .,(t) = 2£,,::'f.

rv-
Fig. S3.7-6

3.8-1 Let .q(l) = f/l(t) + 92(t). Then

whel'e

1 jT!2
Rry(T) = lim -r :r(t)lI(t +1')dt

T-.,.", -T/2
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If we let 9\(1) = CI COS(";lt + ( 1) and 92(t) =C2COS(W2t + (2). t.hen

1 jT/2
R II1lI2 (1")= lim -T C IC2COS(Wlt+81)C05(W2 f +";21"+82)dt

T-,.." -T12

According to the argument used in Example 2.2b. the integral on the right-hand side is zero. Hence. R 911l2 (T) =O.
Using the same argument. we have R lI291 (1") =O. Therefore

C 2 C2

R g (1") =R gi (T) + R II2 (1") = -t COSW11" ++COSW21"

This result can be extended to a sum of any number of sinusoids as long as the frequency of each sinusoid is
distinct. hence. if

.....
g(t) =L C" cos(n..;ot + 8.. )

..=1

then

Moreover. for qo(t) = Co, RfIO(T) ::: C~, and

1 jT/2
R 9091 (1") = lim -T CoCI C05(Wlt + WI T + 9d dt =0

T-"" -T12

Thus. we can generalize the result as follows. If

"'"
q(l) = Co + L C" COS(T1..;ot + 9,,)

""'I

then
"" C 2

R g (1") = C5 + L T COSTl:.v01"
..=1 ..:'"

and

511 (.... ) = 27rC5c'J(w) -+ i L C~rb(:.v - 1I.WO) + c'J(,.; + n....o)]
.... I

S.8-2 riglll'P 53.8-2a shows the waveforms T(I) and x(1 - 1") for 1" < Tb/2. Let T = NT". On the average. there are
N/2 pulses in the waveform of duration T. The al'ea under the product :r(t):r(t - 1") is N/2 times (If- - 1") as
shown in Fig. S3.8-2b. Therefore

1 JT/2
R:r(')= lim -T 3'(t)T(t-1")dt

T-"", -T12

For 1t :s 11'1 :s T". there is no overlap between pulses. and R z (1") =O. For T" :s /1'1 :s ~. pulses again overlap.
But on the average. only half pulses overlap. Hence. R z (1") repeats every T" se~onds, but (lnly with half the
magnitude. as shown in Fig. S3.8-2c. We can express R z (1') 85 a sum of two components. as shown ill Fig.
S3.8-2d. Thus. R.,(T) :=: RI(1') + R2(1'). The PSD is the sum of the Fourier transforms of 1\'.l(T) and R2(T).
Hence

T" . 2 (WT")5z(:.v) = 16 SlnC 4 + 52(";)

"'here 52(";) is the Fourier transform of the periodic triangle function, shown in Fig. S3.8-2d. We find the
exponential Fourier series for this periodic signal to be

....,
R2(1'):=: L D..r j

....,·.,.

n=-r"'JIL,.

Using Eq. (2.80). we find D" = fgsinc 2("2")' Hence. according to Eq. (3.41)
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Therefore

"-'Tz,

Fig. 93.8-2

""1b 2 (WTb) 11' ~ 2 (n1l') ( )
S",(...,) = 16 sine -4- +"8 L- sine T II W - nwb

't=-f'"lIlJ

and

31
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(b) -""" 1 1\ 1.T2(1)=_ dw=-
7l" 0 7l"

and ~ 11\ 1 1
1/2 (t) = - -- UWJ = 
• 7l" 0 WJ2 + 1 4

(c) - 11"'-' 1:7'2(t) = - 11(..,; - l)d..,; = -
7l" 0 7l"

and ~() Ii"'" II(WJ -1).1 _ 1 1"" II(WJ - 1) I _ 1'1'=- ....,;-- 1"';--
• 7l" 0 ..,;2 + 1 7l" 0 2 211'

3.8-4 The ideal difl'el"entiator transfer function is j.,.;. Hence, the transfer function of the entire system is

( 1) jWJH(;.I) = -.-- (.fw) =-.--
J;.I + 1 JW + 1

and

','

," ~

,.
4..,"

~ 1 1"" (:-J)..,;2 1 1\ WJ2 1 ( To)11 (I) = - rect - -.,- dw = - - dw =- 1 - - ;;; 0.06831
11 0 2..,;- + 1 11 0 w2 + 1 7l" 4
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Chapter 4

4.2-1 (i) For m (t) =: ("os WOOl

'Poss.se(l) =m(t)cOSIO,OOOt == Cos lOOOtcos 10, 0001
1

=: 2~OOO$+ ;05 11.0001)

LSB \.1;B

(ii) FOI ",(1) = :l cos 1000' + cos 20001

. ":;D~MC (t) =: //I (1) cos 10. 0001 =: [2 cos 1000t + cos 20001\ cos 10. OOOt
1

=: ("os 90001 + cos 11.0001 + 2[cos 8000t + cos 12. 0001]

1 1 1= icos90001 ... 2 co.s8000tJ + [cos 11.0oot + - cos 12.0001)
.. ., 2 •

". ..
LSB L"SB

(iii\ F,,! ",/1) = cos 1000t cos 30001

1
ifnsB'c (I) = m (I) cos 10.0001 = :i[COS 2000t + cos 4000tJ cos 10. OOOt

1 1
=: '2 [c0580001 + cos 12.000t] + 2lc0560001 + cos 14,000tJ

I, 1~== 2~os 8000t + cos 6OMt) + 2 cos 12. 0001 + cos 14. 0009

~B ~8

This information is summarized in n table below. Figure 54.2-1 shows various spectra.

ModuJ4ted 5 0ntlt $~e~tvz.<m

4.4)..,.

Tell/-

l1l
'/"4lW)

It)'"
-----'~t:Dr· t ~O~....._-

\ j.i)

Fig. S4.2-1
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(b) & ((!. )

, ,
(\I )

M(w) (a.)
2

W!2.+\

w-

(b) ~ lei )

lllt)

... .

'.

-iCl~
'- ...

Fig. 84.2-2

FI,. S4.2-3

D

-TTf'~

case Basp.blLnd frequency DSB frequency LSB frequenc)' I USB frequency I
i 1000 9000 and 11,000 I 9000 I 11.000 I
ii 1000 9000 and 11 ,000 9000 I 11,000 I

2000 8000 and 12.000 8000 I 12,000 I
iii 2000 8000 and 12,000 8000 I 12,000 I

4000 6000 and 14,000 6000 I 14,000 I
4.2-2 The relevant plots are sho"'n ill Fig. 54.2-2.

4.2-3 The relevant plots ale shown in Fig. 54.2-3.
4.2-4 (a) Thp. signal at voint h is

go (f) = TTl (t) COS:\ ...Jct

= 7II(t) fi coswct + ~ COli3...;ct]

34



The t.erm ~/TI(f)COS":ef is the desired modulated signal, whose spectrum is centered at ±w~. The remaining
term i"'(f)cos3wef is the unwanted term, which represent.s the modulated signal with canier frequency 3we
with spectrum centered at ±3>.'e as shown in Fig. 84.2-4. The bandpass filter centered at ±wc allows to pass
the desired term ~m(t)cos.olJ"f. bllt sllpprl!llfles the unwanted term tm(t)cos3wet.. Hence. thill; system works as
desired with the output im(t) cos wet. .
(b) Figure 54.2-4 shows the sper.tra at points band c.
(c) The minimum usable value of .tJc is 21r B in order to avoid spectral folding at de.
(d)

2 ", (t)
1fI(t)COS wet = 2 [1 +cos2:.Jc t!

1 1=2m(f.) + 2m(t)cos2wct

The signal at point b consists of the baseband signal !m(t) and a modulated signal tm(t) cos2wct., which has a
carrier frequency 2we . not t.he desired value iJJe • Both the components will be suppressed by the filter. whose
center center frequency is We. Hence, this system will not do the desired job.
(E') The readel may verify that the idrntity for cosn....·et contains a term coswct when n is odd. This ill; not true
when 71 is even. Hence. the lI;)'stem works for a canier cosn ""ct only when n. is odd.

1:\.
I

C\ Qt-@

bl~ L7'>
".3~ -~ ~. lAJ .... 3"'6

I

C\ I Q
et-(C)

.
-tOe... CO...:.

Fig. S4.2-4

4.2-1'1 WE' use the ring modulator lI;hown in Fig. 4.6 with the carrier frequency ie = 100 kHz (~e = 20071' X 10'l). and
thp. output bandpass filter centered at Ie = 300 kHz. The output 1Ji(t) is found in Eq. (4.ib) as

".(t) = i [mIt) cos wet - !m(t)cos 3wc t + ~m(t) cos 5wct + ...J
7t 3 ,I

The output bandpass filter suppresst's all the terms except the one centered at 300 kHz (corresponding to thE'
carrier ~·ef). Hence. the filter output is

-4
.I/(t) =-3m(t) COli; 3~et

.1r

This is the desired output Jr", (f) l'Os":et. with Jr = -4/31r.

4.2-6 The resistance of each diode is ,. ohms while conducting. and 00 when off. When the carrier A cos";ot is pOlliti\'e.
the diodes conduct (during the entire positivE' half cycle). and when the carrier is negatjv<> thp. diodes are Op<>\1
(during the entire negative half cycle). Thus. during the positive half cyde. t.he voltage ~¢(t) aPIl<>a!'s a.:ros"
ench of th(' rel';istors R. During the negative half cycle. the out.put voltBge is zero. Therefore, t.he diodes act as
a gate in thE' circuit that is b!lSically a voltage divider with a gain 2R/(R + 7'). The output is therefore

2R
"o(t) :::: --Ul(t)m(/)

R+I'

The period of Il'{t.) is To =2r./.tJc. Hence. from Eq. (2.75)
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1 2[ 1 1 ]lI'(t) = '2 + -; cos Wet - 3cos 3wJct + 5' cos 5;';et + ...

The output 1'0(1) is

I'o(t) = n2R
l/'(t)m(t) =~m(t) [.!. + ~ (cos wet - .!. cos 3wct + ~ cos 5<.ict + ...)J

+,. n+r' 2 11' 3 .~

(8) If we pas~ the output I'o(t) through a bandband filter (centered at We). the filter suppresses the signal 17,(t) and
II/(t)cos n"':ct fol' alln "" 1, leaving only the modulated term ~fn(t)COswetintact. Henre. the system actl;
as a modulator.

(b) The same circuit can be used as a demodulator if we use a basepass filter at the output" In This case, the input
is tP(t) = rll(l)coswct and the output is ~TTI(t).

4.2-7 Fl'om the results in Prob. 4.2-6. the output ~o(t) = km(t)cos ....."t. where Ir =~. In the present case.
",(t) = sin (..Jet + fl). Hence, the output is

1'0(1) =ksin(:""ct + 8)coswcf = ~[sinR + sin(2;o;ct + R)]

The 10wpCUls filter suppresses The sinusoid of frequency 2wc and transmits only The dc term ~ sinB.

, .

CDs 2.0DOD"t,
m,{~)

t1-1' f I-a,;'_2._I 'f )

4,2-8 (A) Fig. 54.2-8 shows thE.' signals at points a. b. and c.
(b) From the spectrum at point c. it is clear thaI t.he channel bandwidth must be at least 30.000 rad/s (from
.1)000 To 3.~.OOO I'ad/s.j.
(c) Fig. 54.2·8 shows the re"Poiver 1.0 I'p.covar .",1It) and frl2lt) from the received modulated signal.

4.2-9 (8) S4.2-9 shQWS the output signal sVf'ctrum Y(...:).
(b) Ob:;er\'e tllat Y(...:) is the same as Al(;,,;) with the frequency spectrum in\'erted. that is. the high frequenciE'l;
are shifted to lower freqnencies and "ire versa. Thus. l.he IICrambler in Fig. P4.2-9 inverts the frequency spectrum.
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Fla. 54.3-2

To get back the ori~inal spectrum !Il( .... ). WI' need to invert the spectrum Y(:.:) once again. This can he dOlle by
passing the sCl'ambled signal ,,(I) through the same scrambler.

4.2-10 We use the ring modulator shown in Fig. 4.6. except. that the input is m(t)cos(2r.)10b t instead of TrI(t). The
caniE'r frequency is 200 kHz [""'c ::: (400r.)IQ1t]. and the output bandpnss filter is centered at 400 kHz. Tht?
output ",It) is found in Eq. (4.7b) as

", (t) = [1//1') coS(2r.)I06'JlI'o(t) = 2",(t) cos(2r.)106 t [(:os (400'l1')10't - .! cos 3\400'11')10'1, + ~ CO"" 5(4007:')101
1'" ...1

'11' 3 OJ J

The product of the terms (-1/3)C05 3(40011')lO't and (4/11')m(t)cos(211')106 t yields the desired term
- -(;m(I) cos (SOOr.)IO't. whose' spectrum is centered at 400 kHz. It alone passes through the bandpass filter
(centered at 400 kHz). All the other terms are suppre58ed. The desired output is

,,(t) = - 3:m(t)cos (8001T)lO't

4.3-1q,,(I) = IA. m(t)] cos ""<'. Hence.

q.(t) = IA + met)] cos2 wet

= ~[.4 + m(t)! + klA + m(t)]cos2:.Jet

The first term is a lowpass signal because its spectrum is centered at ~ =O. The lowp.us filter allows this tenn
to pass. hut suppresses the second term. whose spectrum is centered at ±2IoIc . Hence the output of the luwpass
filter io;

,,(t) = A + 111 (I)

When this signal is passed through a dc block, the de term A is suppressed yielding the output TIl ('). This
showl> that the system can demodulate AM signal regardless of the value of A. This is a synchronous or cohert'nt
demodulation.

37



4.3-2

(a) /II" 10 ~ A=20IL=0.5= - =-
.4 A

(b) 11Ip 10
~ A = 10I' = 1.0 = - =-

A A

(c) ,."" 10 :::>.4=5I' = 2.0= - =-
A A

(d) rn 10
I' = OC = ::.2 == - => A =a

A A

This means that I' = 00 represents the DSB·SC case. Figure 54.3-2 shows various waveforms.

4.3-3 <a) According to Eq. (4.10a), the carrier amplitude is .4 = in"/II = 10/0.8 :::; J2.8. The carrier powel' is
Pc =.4. 2 /2:::; 78.125.

tv' (t)

10
.. '.

t~,
..

TO ",",'. -... i

Fiy'.54.3-3

(b) The sideband power is '" 2(1 )/2. Because of symmE'try of amplitude values e\'ery quartp.r cyclE'. the power of
".(1) may be complJted by averaging the signal energy over a quarter cycle only. Over a quarter cycle m(l) can
be representE'd as m(l) =40t/To (see Fig. S4.3-3). Ho!nce.

~ 1 rTo/4 [401]2
Ifl (I) = To/4 io T;;" dl:::; 33.34

The sideband power is
,.".,.,..,.

P. = m:{f) == 16.67

The efficiency is

p. 16.67 00 9 66~
'1 = p. + p. = 78.125+ U:.67 )( 1 =1. 70

4.3-4 From Fig. S4.3-4 it is cleal' that the envelope of the signal m (I) cos ....:ct is Im(t)l. The signal !A + ,,, (t)] cos .....ct is
identical to m(t) COSJoict with met) replaced by A + met). Hence. using the previous argument. it is cleal that
its envelope is IA + m(t):. Now, if A + met) > 0 for all t, then .4 + met) = IA + m(t)j. Therefore. the condition
for demodulating A~I signal using envelope detector is .4 -To met) > 0 for all t.

Fig. 54.3-4
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4.3-5 When an input t.o A DSB·Sc: generator is til (t), the corresponding output is m(t) coswct. Clearly, if the input is
.4 + ",(1), the corresponding output will be IA + 111 (t») COS;Jet. This is precisely the AM signal. Thus. by adding
A de of value .4 to the baseband signal m(t), we can generate AM signal using a DSB·SC generator.
The converse is generally not true. However, we can generate DSB-SC using AM generators if we use two
identical A~f generators in a balanced scheme shown in Fig. S4.3-5 to cancel out the carrier component.

4.3-6 \\'hen an input to a DSB·SC demodulator is m(l) cos ...·et. the corresponding 01.ltpul is m(t). Clearly. if the
input is [A 4- ,,, (t)] COs"'>et, the corresponding output. will A + m(t). By blocking the de component A from this
output. we can del1lodulat~ the Ar.f signal \Ising II DSB-SC demodulator.
The cOllverse. unroll unately. is not true. This is becamle. when an input to an A:\1 demodulator is m (I) CQswel.
the corresponding output is 11II(t)1 [the p.nvelope of m(I)]. Ht'nce. unless m(t) ? 0 for all t, it is not possible to
dernodulatt' DSB-SC signal using an A~f demodulator.
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4.3-1 Ob!oE'I\'(' thaI ",2(1) = .4z fOI alii. Hence. the time average of ff/2(t) is also A2. Thu.,-~ 2 ",2(t) A2

m~(t) =A p. = -2- = T

The carrier amplitude is A = fIIplll = tn, = A. Hence Pe = A2 /2. The total power is P, = Po: -+- P. = .4 2
• The

power efficiency is

P A2 /,)
1/ = p; )( 100 = A2 - x 100 = 0.5

The A:\I signal for II = 1 if; shown in Fig. 84.3-7.

4.3-8 'fh'" signal Pot point a is [.4 + /1/(1)] cos WeI. The signal at point b i~

2 2 .4z + 2.4m(1) + m 2 (t}
.T(t) = \..1 + m(t)J cos "'>e l = 2 (1 + cos 2...·e1)

The lowpa.c;s filter suppresses t.hf' term cont.aining cos 2.;e'. Hence. the signal at point. c is

l'su:dly. 11/(1)/,4 « I for most of the time. Only when m(l) is neoal' its peak, this condition is violated. Hencp..
the output at point d i.o;
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A 2

1/(t) ::::; T + Am(/.)

A blocking capacitor will suppress the dc term A2 /2. yielding the output Atl'/(t). From the signal wet). we see
that the distortion component is 7//2(1 )/2.

4.4-1 In Fig. 4.14. when the carrier is cos HA.... )t + b] or sin (A.... )t + Ii], we have

.Tdl) = 2Im1(t) COIl,.;"I + "'2(t) sin ....et/cos ( ....c + Aw)t + h)

=2m1 (t) cos ....ct cos [(....e + Aw)t + h] + 2m2(t) sin wct cos [(w" + Aw)t + ,Ii)

= "'1 (t){ cos {(A.... )t + b] + cos 1(2we + Aw)t + b]) + Tn2(t.){sin [(2....c + A .... )t + b) - sin HA.... )t + hI}

Similal1y

.T2(tl = m 1(IH sin [(2..;" + A..;)I "t" h] + sin [(Aw)t + hI) + rn2(t){ cos [(A..;)t + h) - cos {(2..;c + A ...·)t + hI)

Aftel' 7'J U) and :T2(t) are passed through lowpass filter. the outputs are

TII~(t) = mdt)cos [(A..;)t + hJ - 7//2(t) sin [(Aw)t + III

Jr/2(1) = 1111(1) sin [(A.... )t + bj + Tn2(t)COS [(A...·)t + h]

4.5-1 To genernte a DSB·SC signal from met). we multiply met) with cos",-,,,I. However. to generate the SSB signals
of thE:' same relative magnitude. it is convenient to multiply m(t) with 2cos";et. This also avoids the nuisance
of the fractions 1/2. and yields the DSB·SC spectrum M (w - w,,) + At (;."I +;."Ie). We suppre5S the CSB spectrum
(above ...·e and below - ....e) t.o obtain the LSB spectrum. Similarly. to obtain the USB spect.rum. we suppress
the LSB spectrum (bl'twecn - ....e and..;e) from the DSB·SC spectrum. Figures 54..;·1 a. band c show the three
C'iloSes.
(a)From Fig. a. we can express .ft.S8{t) = c05900t and IPl:S8(t) =cos 1100t.

(b )From Fig. b. we can express <?'LS8 (t) =2 cos 700t + cos 9001 and 'Pl'58 (t) = cos 11001 + 2 cos 1300'

(c)Fl'om Fig. c. we can express -hss(t) = ~!cos400t + cos 6001] and IPns(l) = ~!cos 14001 .. cos 1600(

4.5-2
'fl'S8{t) = m(t)cos .... e l - tl'/h{t)sinwct and

(a) m(l) =cos lOOt and TIIh(t) = sin lOOt. Hence,

'fLU (t) =cos lOOt c081000t + sin lOOt sin l000t =cos(lOoo - 100)t =cos900t

lpnB (t) =cos lOOt cos 10001 - sin lOOt sin 1000t =cos(1000 + 100)t =cos ll00t

(b) UI (t) ::; cos 1001 + 2 cos 3001 and m" (t) =sin lOOt + 2 sin 3OOt. Hence,

.; I.~D (t) = (cos lOOt + 2 cos 300t) cos 10001 + (sin lOOt + 2 sin 300t) sin 1000t =cos 900t + 2 cos 7001

'f L~'S (I) = (cos lOOt + 2 cos 3001) cos 10001 - (sin lOOt + 2 sin 300t) sin 1000t = cos 1100t + 2 cos 13001

(I:) w(l) =cos 1001 cos 500t =0.5 cos 4001 + 0.5cos600t and Tn,,(t) =0.5 sin 400t + 0.5sin600t. Hence.

h~B (t) =(0.5 cos 4001 + 0.5 cos 600t) cos 1OO0t + (0.5 sin 400'. + 0.5 sin 6OOt) sin 1000t =0.5 cos 400t + 0.5 cos 600t

:;l~B(t) = (0.5 cos 4001 + 0.5 cos 6001) cos 10001 - (0.5sin400t + 0.5sin600t) sin 1000t = 0.5 cos 1400t +- 0.5eos 16001
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4.5-3 '.1) Figurp S4.5-3a shows 1he spectrum of m(f) and Fig. S4.5-3b shows the corresponding DSB-SC spectrum
'21/,11\ cos ft) t>l1crrt
(hi Figure S4..,).3c shows I he cOlTesponding LSB spectrum obtained by suppressing the eSB spectl'Um.
lc) Figure S4.5-3d shows the corresponding USB spectrum obtained by suppressing the LSB sppctrum.
\\'p now find thp inverse Fouril'r nansforms of the LSB and USB spectra from Table 3.1 (pair 18) and the
fl'l"(lllenry shifting propcrt~· as

of'.58 (I) = 1000 sine (1000111) cos 900011'

'Pl5B(t) = lOOOsinc (100011"/) cos 11.0oo1l"t

4.5-4 Because MIt(w) = -.iM(..:) sgn (w). the transfer function of a Hilbert transformer is

H(;.;) = -jsgo(,.)

If we apply", It (f) at the input of the Hilbert. t.ransformel'. Y (w). the spectrum of the output signal 1I(f) is

This !>hows that the Hilbert transform of "'It(f) is -m(f). To show that the energies of lII(f) and 111I1(f) an! ,I

E'qual. we have
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4.~-~ The incoming SSB signal at the receiver is given by [Eq. (4.17b)]

lfLSD(t) =m(t) cos wet + m,,(t)sinwet

Let the local carrier be co.'! [(We + ~w)t + hJ. The prodeuct of the incoming signal and the local carrier is I'd(t).
given by

rd(f) = ""LSS(t) cos [(We + ~w)t + h)
= 2[1II(f)C08.,.)et + 1I'I,,(t) sin wet) cos [(We + ~W)t + II]

The lowpass filter suppresses the sum fl-equency component centered at the frequency (20.1< + ~w). and passes
only the difference frequency component centered at the frequency £:.w. Hence, the filter output r.o(t) is given
by

I'o(t) = 111 (t) cos(~w)t+ h) - Tn ,,(t) sin(6w)t + h)

Obser\"1.' that if both ~....' and Il are zcro. the output is given by

r.o(t) =m(t)

as expected. If only ~ = O. then the output is given by

1'0(1) = m(f·)cos(6w)t - m,,(t)sin(6..J)t

This is an t'SB signal corrE'sponding to a carrier frequency ~..J as shown in Fig. S4.5-5b. This spectrum is the
saml.' as the spectrum M (..... ) with each frequency component shifted by a frequency ~"". This changes the sound
of an audio signal slightly. For voice signals. the frequency shift within ±20 Hz is considered tolerable. Most l'S
systems, howevel'.lestl'ict the shift to ±2 Hz.
(b) When only ~..J = O. the lowpass filter output is

I'o(t) =m(t)cos~ -m,,(t)sinh

We now show thaI this is a phase distortion, where each frequency component of .U(..;) is shifted in phll~e by
amollnt ~. The Fourier transform of this equation yields

But from ECj. (4.J4b)

and

{

-jM(...,)
Ilh( .... ) = -jsgn (;..I)M(w) =

M(;',I)

W>o
w<O

W>O
...,<0

It follows that the amplitude spectrum of I'o(f) is Af(.... ). the same as that for m(t). But the phase of each
component is shifted by Il. Phase distortion generally is not a serious problem with voice signals, becausc the
human ear is somewhat insensitive to phase distortion. Such distortion mlly change the quality of speech. but
the ,"oice is st ill intelligi ble. In video signals and data transmission, howe\'er, phase distortion may be intolerable.

4.5-6 We showed in prob. 4.5-4 that the Hilbert transform of rTlh(t) is -m(t). Hence, if m,,(t) [instead of 111(1)] is
applied at the input in Fig. 4.20. the USB output is

Y(f) = //I h (I) cos "',.f - 1fI U) sin ..Jet.

=1fI (t) cos (we' + I) + 711" (t) sin (wet + I)
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Thus. if we apply m"U) at the input of the Fig. 4.20. the USB output is an LSB lIignal corrf'sponding to (,,(I).
The calrier also acquires a phase shift 1r /2. Similarly. we can show that if we apply 7/1 ,,(1) at the input of the
Fig. 4.20. the LSB output would be an USB lIignal corresponding to m(t) (with a ('arrier phase shiftE'd by 1r/2).

4.6-1 From Eq. (4.20)

1
Ho (.":)='. l..vl::: 2r.B

H.( ....· + ..vc) T HI(w - wc}

Figure S4.6-1a shows H,( ...: - ....c) and H,(,..; +"';c). Figure 54.6-1b shows the rE'cipl'ocal. which is Ho(.... ).

4.8-1 A station can be heard at its allocated frequency 1500 kHz as well as at its image frequenc)·. The two frequencies
are 2/1F Hz apart. In the present case. /IF = 455 kHz. Hence. the image frequency is 2 x 455 = 910 kHz apart.
Thel'l'fore. thE' :;tation will ah;o be heard if the receiver is tuned to frequency 1500-910 = 590 kHz. The l'easCin for
this is as follows. When the receiver is tuned to 590 kHz. the local oscillator frequency is fLo =590+455 = 1045
kHz. :'-low this frequency fLo is multiplied with t.he incoming signal of frequency Ic = 15(10 kHz. The output l'
yit'lds the two modulated sigllal:; wholle carrier frequencies are the sum and difference frc-quencies. which arr,
1500 -;- 104.; = 2545 kHz and 1500 - 1045 = 455 kHz. The sum carrier is suppressed. but the difference carrier
passes through. and the station is recei\'ed. /'

4.8-2 The local oscillator generates frPquencies in the I'ange 1+8=9 MHz to 30+8=38 MHz. When thl? recci\'er setting
is 10MHz. fLo = 10 + 8 = 18 :\fHz. ","ow. if there is a station at 18 + 8 = 26 :\lHz. it will beat (mix) with
/Lo = 18 MHz to produce two signals centered at 26 + 18 = 44 MHz and at 26 - 18 = 8 MHz. The sum
component is suppressed by the IF tiltel'. but the difference component. which is centered at 8 MHz. passes
through the IF filtel.

.,,

y
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Chapter 5
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Fig. S5.1-1

5.1-1 In this case Ie = 10 ~.lHz. /rip = 1 and m~ = 8000.

For FM :

~f = A'fll/p/2':r = 2'71" )( ]0~/2r. = lOS Hz.. Also Ie = 107
. Hence, (f.)mlAx = 10'7 + IG~ = 10.1 MHz. and

!f,)mlTl = 107
- lOS = 9.9 :\lHz. The carrier frequency

increases linearly from 9.9 ~fHz to 10.1 MHz over a quarter (rising) cycle of duration a seconds. For the next (/
seconds. ....-h('n r,.,(t) = 1. the carrier frequency remains a.t 10.1 MHz. Over the next quarter (the falling) cycle of
duration fl. the carrier frequency decreases linearly from 10.1 MHz to 9.9 MHz., and over the last quartet cycle,
when /1/ (t) = -I. the carrier frequency remains at 9.9 MHz. This cycles repeats periodically with the period 4fl
seconds as shown in Fig. 55.]·] a.
For PM:

~f = kpm~/2r. = 50r. )( ROOO/2'1l' = 2 x lOs Hz. Also Ie = 10'7. Henre. (j.)max = ]07 + 2 x lOS = ]0.2 MHz.
and l/,)mm = 107

- 2 x lOs = 9.8 :\1Hz. Figure 85.1-1b shows m(t). We conclude that the frequency remains at
]0.2 ~1Hz o~'er the (rising) quarter cycle, where 1;I(t) =8000. For the next a seconds, Tn(t) = O. and the carriel'
frequency remains at 10 MHz. Over the next a seconds. where rir.(t) = -8000. the carrier frequency remains at
9.8 ~IHz. Over the last quarter cycle rh(t) = 0 again, and the carrier frequency remains at 10 MHz. This cycles
repeat .. periodically with the period 41.1 seconds as shown in Fig. 85.1-1.

5.1-2 In this case Ie = 1 MHz. 1//1' = 1 and T1I~ =2000.

For FM:

~f = I:f"'p/2rr = 20,000::- /2rr = 104 Hz. Also Ie = 1 MHz. Hence, (ji)mu. = lOS + 104 = 1.01 MHz. and
(f.)min = lOS - 10" = 0.99 MHz. The carrier frequency rises linearly from 0.99 MHz to 1.01 MHz over the cycle
(over the interval -~ < f < 10;3). Then instantaneously, the carrier frequency falls to 0.99 MHz and starts
rising linearly to 10.01 MHz over the next cycle. The cycle repeats periodically with period 10-:1 as shown in
Fig. 55.1-2a.
For PM:

Here. because 111(1) has jump discontinuities. we shall use a direct approach. For convenience. we select the
origin for flIrt) as shown in Fig. 55.1-2. Over the interval~ to if. we can express the message signal as
m(t) = 2000t. Hence.

';p~(t) =cos [2rr(10)6t + ~m(f)J

= cos (2rr(lO)llt + i2ooOt]

:-.: cos [2rr(10)6 t+ 1oo01rt] := cos [21r (106 + 500) t]

At the diSC'ontinuity. the amount of jump is 1rId = 2. Hence, the phase discontinuity is ~'pmd = ro. Therefore,
the carrier frequency is conslant throughout at 106 + 500 Hz. But at the points of discontinuities. there is a
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phILlIe discontinuity of 11' radians 8& shown in Fig. S5.1-2b. In this case, we must maintain k" < 11' because there
is a discontinuity of the amount 2. For k" > 11', the phase discontinuity will be higher than 211' giving rise to
ambiguity in demodulation.

~.1·3

(a) epPM(t) = A cos [We' + k"fT/(f)J = 10 cos{10,000t + k"m(f)]

We are given thaI <fp~dt) = 10 cos (13.000f) with k" = 1000. Clearly. m(t) = 3t over the intervalltl ::; 1.

(b) <;n.I(t) = A cos [.....el + k! /' m(O)do] ::: 10 cos [1O.000f + kf /' TII(a)da]

Therefore k! It rr,(a)tlo = 1000/' m(a)tlo = 3000f

Hence 3t =/' m(o) do =- m(t) =3

;.

5.2-1 In I his case Ir! = 1000r. and kp = 1. For

m(f) = 2 cos lOOt + 18 cos2ooor.t and ril(t) := -200 sin lOOt - 36.00011' sin 20oor.I

Therefore TI,,, = :.lO and ",~ = 36.00011' + 200. Also t.he baseband signal bandwidth B = 200011' /211' =1 kHz.

For FM: : ~f = kflll,,/211' = 10.000. and Bns = 2(~1 + B) = 2(20.000 + 1000) = 42 kHz.
For PM: : ~I = k"rtI~/211' = 18.000 + ~ Hz. and Bpt.·s ='l(AI + B) =2(18.031.83 + 1000) ;: 38.06366
kll:!.

5.2-2 :;£~1 (I) =10 COS(Wel + 0.1 sin 2oo0r.t). Here, the baseband signal bandwidth B = 2ooolf/211' = 1000 Hz. Also,

"'.(1) = We + 20011' cos 2()()(hrf

Therefore. A..... = 20071' and AI = 100 Hz and BEM ::: 2(Af + B) =2(100 + 10(0) = 2.2 kHz. ..
5.2-3 <;£:\11(1) = 5 cos(wel + 20 sin 1oo07l'f + 10 sin2oo01l't).

Here. the baseband signal bandwidth B =200011'/211' = 1000 Hz. Also,

w,(f) = We + 20,000", cos 10007l't + 20,00011' cos 2000""

Therefore. Ao&I =20.000",+20.00071' = 40,000lf and Af = 20 kHz and BEM =2(AI +B) = 2(20.000+ 1000) =\2
kHz.

5.2-4 The baseband signal bandwidth B =3 x 1000 =3000 Hz.
For FM: ~I = 1<2:'· = Jt,x I = 15.951 kHz n.nd Bn.1 = 2(~f + B) = 37.831 kHz.

k m'
For PM: ~I =~ = 211;~OOO = 31.831 kHz and BpM =2(~f + B) =66.662 kHz.

5.2-5 The baseband signal halldwidth B ~ Ii x 1000 =5000 Hz.
For FM: ~f = Ic~:p = 2OCJ~;)t1 = 1 kHz and Bnl =2(Af + B) = 2(2 + 5) = 14 kHz.
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For PM: To find BPM. we observe from Fig. 55.1-2 that lfJFM (t) is essentially a sequence of sinusoidal pulses
of widTh T = 10-:1 seconds and of frequency Ie = 1 MHz. Such a pulse and its spectrum are depicted in Figs.
3.22c and d. respectively. The bandwidth of the pulse. as seen from Fig. 3.22d, is 4'"/T rad/s or 2/T Hz. Hence.
Bpl\I = 2 kHz.

5.2-6 (a) For FM: AI = Ie~:p = 2llO.T,?.... 1 = 100 kHz and the baseband signal bandwidth B = 2~" = 1 kHz.
Therefore

Bf'M = 2(AI + B) = 20~ kHz

For PM: AI = /c;';~ = lO"I?" = 10 kHz and BpM = 2(AI + B) = 2(10 + 1) =22 kHz.
(b) m(l) = 2 sin 2oo01l't. and B = 200011'/211' = 1 kHz. Also rn" =2 and m~ =400011'.

For FM: ~I = kf'P = 200.qpotrX2 = 200 kHz. and" ...
Bn.l =2(AI + B) = 2(200 + 1) =402 kHz

k m'
For PM: AI =T = !O"teoo" =20 kHz and Bpt.! =2(AI + B) = 2(20 + 1) =42 kHz.
(c) m(l) = sin 4000",t, and B = 4000"'/211' =2 kHz. Also m" = 1 and m~ =400071'.

For FM: ~I = /clamp = 200·WO""! = 100 kHz andu ~ ,

Bnl = 2(~1 + B) =2(100 + 2) = 204 kHz

For PM:
It. m' 000

AI =~ = IO"lr" = 20 kHz and Bp),1 = 2(AI + B) = 2(20 + 2) = 44 kHz.

(d) Doubling the amplitude of ", (I) roughly doubles the bandwidth of both FM and PM. Doubling the frequency
of lII(t) [expanding the spectrum .U(:.J) by 8 factor 2] has hardly any effect on the FM band..... idth. However. it
roughly doubles the bandwidth of P:\1. indicating that P~1 spE'ctrum is sensiti\'e to the shape of the baseband
sprrtrum. F'-1 spectrum is relative!y insensitive to the nature of the spectrum Af(;.;).

5.2-1 From pair 22(Tnble 3.11. we obTain r-
1a~ Vi r-""a/l. The spectrum M(w) = Vi p_""a/4 is a Gaussian puIsf'.

which deca~'s rapidly. lis 3 dB bandwidth is 1.178 rad/s=0.187 Hz. This is an extremely small bandwidth
compared 10 f:j,f.

2 2/4Also ,;.(t) = -2Ir- 1 12. The spectrum of ,;,(t) is M'(..,) = j..,A/(..,) = jVi",,'('-"" . This spectrum also deca:;s
rapidly away from the origin. and its bandwidth can also be assumed to be negligible compared to !i.f.

For FM: f:11 = k~'";" = ~:'1 == 3 kHz and Bnl:::: 2f:j,1 = 2 x 3 = 6 kHz.

For PM: To find ",~. we set the derivative of ';1(1) = _2tr- ta
/ 2 equal to %ero. This yields

1
=-t= v'2

and m~ = ,il(~) = 0.858. and

!i.1 = Ie,:';' = SllOO;~O.858 == 3.432 kHz and BpM :::: 2(Af) = 2(3.432) =6.864 kHz.

5,3·1 The hlork diagram of the design is shown in Fig. 55.3-1.

{ :100 ~~,...--""",~~ I~'5 MHt
-a---t oX lJt5
Af= 10 fib Af=U260 H.

Fia·55.3-1
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5.3-2 The block diagram of the design is shown in Fig. 55.3-2.

5.4-1

(a) lPPM(t) = A cos [""et + kl'm(t)]

When this 'l'Pt-I(t) is pas8l'd through an ideal FM demodulator, the output is kpT;/(t) This signal. when passed
through an ideal integrator. yields k"m(t). Hence. FM demodulator followed by an ideal integrator acts as a PM
demodulator. Howevel'. if met) has a discontinuity, m(t) "'" 00 at the point(s) of discontinuity. and the system
will f:\il.

(b) c;YM(t)"", A cos [wcf+klj\·71(o.)do.]

'\'hl'n this signal .pnl (t) is passed through an ideal PM demodulator, Ihe output is k f r Tn (0) do. When this
sip;nal is passed through an ideal differentiator. t.he output is klm(t). Hence. PM demodulator. followed by an
ideal differentia tor. acts as FM demodulatl,)r regardless of whether", it) has jump discominuities or not.

5.4-2 Figure 55.4-2 shows the waveforms at point.s b. c. d. and e. The filure is self explanalor)'.

5.4·3 From Eq. (5.30). the Laplare transform of the phase error 8.(t) is given by

e.(.~) = .•, e.( .• )
,. + AJ\ H(s)

for fI,rt) = kt 2 . e,(.,) =~. and•

The sleady-sl ate phase enol' [Eq. (533)] is

Hence. Ihe incoming signal cannot be tracked. If

s+a
H(.~)=-,

"
then

and
2k 2k

lim 9,(t) = lim 116.(..) = lim 2 4K( ) "'" --
1--.- .-0 .-08 +. II + a Ako

lienee. the incoming signa.l can be tracked within a constant phase 2k/Aka radians. Now. if

2
H()-" +n,,+b

.• - .•2 then

llnd

lim fI,(t) = Jim .•e.( .• ) = Jim :I AK~~'" I) "'" 0
t·_",,· .-0 .-0 .~' + .• + a.• + I

In Ihis rase. Ihe incoming signal can he tracked with zero phase error.
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Chapter 6

G.l·l The bandwidths of Rl(t) and 112(t) are 100 kHz and 150 kHz, respectively. Therefore t.he Nyquist sampling rates
for 111 (t) is 200 kHz and for 11,(f) is 300 kHz.
Also 111

2(t) <==:> ';;Rl("';) •.qt{\OJ), and from the width property of convolution the bandwidth of 111 2(t) is twice
the bandwidth of .ql{f) and that of 112:\(t) is three times the bandwidth of 112(t) (se also Prob. 4.3-10). Similarly
the bandwidth of 111 (t)R2(t) is the !um of the bandwidth of Rl (t) and R2(t). Therefore the Nyquist rate for RI 2(1)
is 400 kHz. for 112:\(1) is 900 kHz. for .ql(t)112(f) is 500 kHz.

6.1·2 (a)

sinclOO",') <==:> O.Olrect (~)

The bandwidth of this signal is 100 11' rad/s or SO Hz. The Nyquist rate is 100 Hz (samples/sec).
(h)

sinc2 (lOO1l'f)~ 0.01t:.(~)

The band\\'idth of this signal is 20011' rad/s or 100 Hz. The Nyquist rate is 200 Hz (samples/sec).
(c)

sine (lOOrof) + sinc (507l't) <==:> O.OIrect 0.01 (~) + O.02rect (~)

The bandwidth of the first term on the right-hand side is 50 Hz and the second term is 25 Hz. Clearly the
bandwidth of the compositE' signal is the higher of the two, that is. 100 Hz. The :\yquist rate is 200 Hz
!sarnples/sec).
(d)

sincllOO:-rI) + 3sinc2 (601l't)~ 0.01 rect(~) + 10 t:.(2:W")

The bandwidth ofrect(ifo;) is 50 Hz and that of C.(~) is 60 Hz. The bandwidth of the sum is the higher of
the t\\'o. that is. 60 Hz. The :"yquist sampling rate is 120 Ih.
(e)

sinc(50"'t) <==:> 0.02 rect( 163,,)

sinc(lOO"'t) <==:> 0.01 rect(~)

The two signals have bandwidths 25 Hz and SO Hz respectively. The spectrum of the product of two signals is
1/21r times the convolution of their spectra. From width property of the convolution, the width of the convoluted
signal is the sum of the widths of the signals convolved. Therefore. the bandwidth of sinc(S01l'1)sinc(100",t) is
25 + 50 = 75 Hz. The Nyquist ra.te is 150 Hz.

6.1·3 The pulse train is a periodic signal with fundamental frequency 28 Hz. Hence, \OJ. ;: 21r(:l8) =411' 8. The period
is To = 1/28. It is an even function of t. Hence, the Fourier series for t.he pulse train can be expressed as

""
PT.(f) =Co+ LCnCOSI'1;.).t

"-1
Csing Eqs (272). we obtain

1 /1/168 1
no = Co "" - III = -.

To -1/16B 4

Hence.

? /1/168 2
an =en =..:.. cosnw;.tdt = - sin (~).

To -1/11;B ml' 4

1i'( t) = g(t )PT. (f)

I .,., 2 . (nJl')=-q(f.) +~ - sm - g(l) cos I'1w.l
4 £- 117r 4

"=1
::'0
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FiK. S6.1-4

6.1-4 For 11(') == sinc2(S"") (Fig. 56.1-4a). the spectrum is 0(101) =O.2~(~) (Fig. 56.1-4b). The bandwidth l)f this
signal is !; Hz (IOn rad/s). Consequently, the Nyquist rate is 10 Hz, that is. v.-e must sample the signal at a rate
no less than 10 samples/so The Nyquist interval is T == 1/2B == 0.1 second.
Recall that the sampled signal spectrum consists of (l/T)G(",') == Y ~(~) repeating periodically with a period
equal to the sampling frequency f. Hz. We present this information in the following Table for tflree sampling
rates: f. == 1; Hz (undel'sampling). 10 Hz (Nyquist rate). and 20 Hz (oversampling).

sampling frcquenr}' f. sampling interval T ;G(w) comments

5 Hz 0.2 ~(E;) I Undersampling I
10 Hz 0.1 2~ ~ Nyquist Rute

20 Hz 0.05 4~
... Oversampling~

In the first rase (undel'sampling). the sampling rate ilil 5 Hz (5 samples/sec.), and the spectrum tC(.... ) repeats
e\'ery S Hz (lOr. rad/sec.). The successive spectra overlap, as shown in Fig. S6.1-4d, and the spectrum 0(,;,,;) is
Ilot reco\'elable from G(.... ). that is. g(f) cannot be reconstructed from its samples g(') in Fi~. 56.1-4c. If th\?
sampled signal is passed through an ideal lowpass filtt!r of bandwidth I) Hz. the output spectrum is reet (.;0,,).
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and

6.1-5

6.1-6

and the output signal is 101linc(201rt). which is not the desired ~nal sinc 2 (51rt). In the second case. we use
the !'Iyquist sampling rate of 10 Hz (Fig. 56.1-4e). The spectrum G(w) consists of b.!.ck-to-back. nono\"erlapping
repetitions of tG(w) repeating every 10 Hz. Hence, G(w) can be recovered from G(w) using an ideal lowpass
filtpl" of bandwidth 5 Hz (Fig. 56.1-4fL The output is 10sillC 2 (5r.t). Finally, in the last case of oversampling
(sampling rllte 20 Hz). the spectrum G(w) consists of nonoverlapping repetitions of tG(...·) (repeating every
20 Hz) with empty band between successh'e cycles (Fig. S6.1-4h). Hence. G(w) can be recovered from G(w)
using an ideal lowpass filter 01' even a practical lowpass filter (shown dotted in Fig. 86.1-4h). The output is
20 sine 2(511't).

This scheme is analyzed fully in Problem 3.4-1. where we found the bandwidths of m(t), m(t).and,,(t) to be 10
kHz, 5 kHz. and 15 kHz. respectively. Hence, the Nyquist rates for the three signals are 20 kHz. 10 kHz. and 30
kHz. respectively.

(a) When the input to thill filter is h(t). the output of the summer is h(t) - h(t - T). This acts as the input to
the integratol". And, "(f). the output of the integrator is:

1/(t):: l' (h(T) - b(T - T)j dT :: u(t) - fJ(t - T) =: rect (t ;.')
Thp impulse response "(t) is shown in Fig. 56.1-6a.
(b) The transfer function of this circuit is:

H(w):: TSinc( ..,,;;),.-i..,T/2
IH(..,,;)! =: T ISinc( w;)I

The amplitudp response of the filter is shown in Fig. 56.1-6b. Observe that the filter is a lowpass filter of
bandwidth 2-rr/T rad/s or IjT Hz.
The impulse response of the circuit is a rectangular pulse. When a sampled signal is applied at the input. each
sample f;enerates a rectangular pulse at the output. proportional to the corresponding sample value. Hence the
output IS a staircase approximation of the input as shown in Fig. 56.1-6c.

Figure 56.1-6

T 4T

.~_. ,

1 ''1 ·rI .....

e-

6.1-7 (a) Figure S6.1-ia shows the signal reconstruction from its samples using the first-order hold circuit. Each
sample gpnt>rates a triangle of width 2T and centered at the sampling instant. The height of the triangle is equal
to t hI:' sample value. The resulting signal consists of straight line lIegmt!nts joining the sample tops.
(h) The transfer function of this circuit is:

1I(,.;) :: T{iI(f)} =T {A (2~)}=: Tsinc3 (w{)
Because H(..,,;~ is positive for all iJJ. it also represents the amplitude response. Fig. S6.1·7b sholl.·s the impulse
response hit) = A( ,*). The corresponding amplitude response H(,.;) and the ideal amplitude response (lOWPll.£s)
required for signal reconstruction is shown in Fig. 56.1·7c.
(c) A minimum of T sees delay is required to make h(t) causal (realizable). Such a df!lay would cause the
recollstructed signal in Fig. 56.1-7a to be delayed by T sees.
(d) When the input to the first filter is ~(t). then as shown in Prob. 6.1-4. its output is a rectangular pulse
1'(t) = tJ(t) - tJ(t - T) shown in Fig. S6.1-4a. This pulse p(t) is applied to the input of the second identical filter.
The output of the slimmer of the second filter isp(t) - p(t -1') = tJ(t) - 211(t - T) + fJ(t - 2T), which is applied
to the integrator. The output iI(t) of the integrator is the area under p(t) - p(t - T). which. as

hIt) = l' [tJ(T) - 211(T - T) + tJ('" - 2T)JtI.,. = ttl(t) - 2(t - T)u(t - T) + (t - 2T)'I(t - 2T) = A C~.·I)

sho\\"n in Fig S6.1-ib.

6.1-8 As.c;ume n signalll(t) that is liimultaneously timelimited and bandlhnited. Let g(iJJ) =: 0 for Iwl > 211' D. Therefore
,q( ••:;rect(,l:u') =: q(.... ) fOI B' > B. Therefore from thf! time-convolution property (3.43)

l1(t):: g(t) * (2B'sinc(21rB't)j

= 28'I1(t). llIinc(27rB't)
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Filure 86.1-T

Because R(t) is timelimiteti. g(t) =0 for ItI > T. But .q(t) is equal t.o convolution of get) with sinc(2wB't) which
is not timelimitl'd. It is impossible to obtain a time-limited signal from the convolution of a time-limited signal
with a non-timelimitl'd signal.

6.2-1 (8) Since 128 = 2". we need 7 bits/character.
(b)For 100,000 characters/second. we need 700 kbit.s/second.
(8) 8 bit.s/character and 800 kbits/second.

6.2-2
(8) The bandwidth is 15 kHz. The Nyquist rate is 30 kHz.
(b) 65:;36 = 216

. so that 16 binal~' digits are needed to encode each sample.
(e) 30000 x 16 =480000 bits/so
(d) 44100 x 16 = 705600 bits/so

6.2-3
(8) Tht> ]';yquist rate is 2 x 4.5 X 106 = 9 MHz. The actual sampling rate"" 1.2 x 9"" 10.8 MHz.
(b) 1024 = 210

• so that 10 bits or binary puLees are nl'eded to encode each sample.
(e) 10.8 x \06 X 10 = lOS x 106 or 108 Mbits/r..

6.2-4 If TII p is thl' peak sample amplitude. then

quantization error < (O.2)(Tll p ) =~
- 100 500

!eCllll5e the maximum quantization error is ~ =~ "" T' it follows that

6.2-1)

6.2-6

~ -!!:.l. ==> L "" 500L - 500

Because L should be a power of 2. we choose L "" 512 = 29
. This requires a 9-bit binary code per sample The

:\'~'quillt rate is 2 x 1000 "" 2000 Hz. 20% above this rate is 2000 x 1.2 "" 2400 Hz. Thus. each signal hc.s 2400
samples/second. and each sample is encoded by 9 bits. Thp.refore. each signal uses 9 x 2400 = 21.6 kbits/second.
Fi\'t' such signals are multiplf'xed. hence. we need a total of 5 x 21.6 = 108 kBits/second data bits. Framing
and synchronization requires additional 0.5% bits. that is. 108,000 x 0.005 "" 540 bits, )'ielding a total of 108540
bit.s/second. The minimum transmission bandwidth is ¥ = 54.27 kHz.

Nyquist rate for each signal is 200 Hz.
The sampling rate f. =2 x Nyquist rate =400 Hz
Total numbt'r of samples for 10 signals =400 x 10 =4000 samples/second.
Q .. < 0.200, ~uantlzatlon error _ 1 = 400

Moreo\"er. quantization enor =~ =~ ;:: T =:ii ==> L =400
Because L is a power of 2, we select L = 512 "" 2". that is, 9 bits/sample.
Therefore.. the minimum bit rate =9 x 4000 = 36 kbits/second.
Thf' minimum cable bandwidth is 36/2=18 kHz.

~
For n sinusoid.~ = 0.5. The S]';R "" 47 dB =50119. From Eq. (6.16)m p

~
So = 3L:I~ =3L 2(0.5) = 50119 ==> L = 182.8
No 11I p

Because L is a ?ower of 2. we select L =256 = 28
. Th'! SNR for this \'alue ofL is--~,o == 3L :I~ = 3(256)2(0.5) ;:: 98304 =49.43 dB

'-'0 111;;
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Fi•. 56.2.7

6.2-7 For this periodic m(t). each quartp.r cycle takes on the same set o( amplitude values. Hence, each quarter cycle
contributes identical energy. Consequently, we can compute t.he power for this signal by averaging its energy
over a quarter' cycle. The equation of the first quarter cycle u shown in Fig. 86.2-7 is m(t) = 4A/To. where A is
the peak amplitude and To is the period of m(t). The power or the mean squared value (energy averaged over
a quarter cycle) is

~ 1 lTot.. (4A)2 A2",2(t) = __ _ dt =-
To/4 0 To 3

~

~I mJ(I) A
2 {'1 J.[encl.'.~ = • = .\.m p ,.. .

The rest of the solut ion is identical to that of Prob. 6.2-6. From Eq. (6.16). SNR "f 47 dB is a ratio of 50119. iF;

BE'e~usE' L is a power of 2. we select L = 256 = 2s . The SNR (or this value of L is

So ~~ 2
-;:;- = 3L--=r = 3(256) 0/3) = 65536 = 48.16 dB
.~o TT1p

==- 1. = 473.83

6.2-8 Here 'I :::: 100 and the S:'IiR = 45 dB= 31,622.77. From Eq. (6.18)

So 3L 2

No = (In 101)2 = 31,622.77

Becallsl' L is a power of 2. we select L = 512 = 211 . The S~R for this value of L is

§. _ 3(512)2 _ ? _
No - (In 101)2 - 369_2.84 - 45.67 dB

6.2-9 (a) :'Iiyquist rate = 2 x 106 Hz. The actual sampling rate is 1.5 x (2 x 106 ) :::: 3 X lOb Hz. Moreover. L = 256
and /' = 255. From Eq. (6.18)

So 3L2 3(256)2
"Flo = (In(11 + 1)]2 = (In 256)2 ... 6394 =38.06 dB

(b) If we reduce the sampling rate and increue the value of L so that the same number of bits/second is
maintained. we can improve t.he SNR (because of increased L) with the same bandwidth. In part (a). the
sam.,ling rate is 3 x 106 Hz and each sample is encoded by 8 bits (L :::; 256). Henct'. the transmission rate is
8 x 3 X 106 = 24 Mbits/second.
If we reduce the sampling I'atf! to 2.4 x lOll (20% above t.he Nyquist rate). then for t.he same tran!imission rate
(:24 ~1bits/s). we can hlwe (24 x 106 )/(2.4 x 106 ) = 10 bits/sample. This results in L :::; 210

:= 1024. Hence. the
new S!'R is

.§. _ 3L2 _ 3(1024)2_ ? _

No - Iln(/t + 1)]2 - (In 256)2 - 10_300 - 50.1 dB

Clearly. the SNR is increased by more than 10 dB.

6.2-10 Equation (6.23) shows that increasing n by one bit increases the 8NR by 6 dB. Hence. an increase in the SNR
by 12 dB (fro111 30 to 42) can be accomplished by increasing n from 10 to 12, that is increasing by 20%.

6.4-1 (a) From Eq. (6.33)

so that 1 - (11)(64,000) -00-8
- 211' x 800 ==> 11 - . { .1
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(b)

(c) Here So = tf = 0.5. and

(d) For uniform distribution

N = ",21! = (0.0785)2(3500) = 1 12 )( 10-4

o 3/. (3)(64000) .

So 0.5 446 10:1
No = 1.12 )( 10-4 =. )(

-r- ,,,2 1
So = 111 (t) = -f = -

3 3
so that So 0.333 =2.94 x 10:1

No = 1.12 X 10-4

(e) For on-of!' signaling with a bit rate 64 kHz. we need a bandwidth of 128 kHz. For a bipolar case. we need a
bandwidth of 64 kHz.



Chapter 7

7.2-1 For full width reet pulse P(') =rect(~)

P(m) = 7j, sine ( t»? )

For polar signaling [see Eq. (7.12»)

Ip(t»t (t»7i )Sy(t») = = 7j, sinc:2 ~
Tb 2

For on-off case [see Eq. (7. lib)]

Ip(t»( [ 2· GO ( 2-)]Sy(m) = 1+-" r B m--=41i, 1i, _-0 1i,

=It sinc2 (t»1i,) [1 + 2tr f 6 (t» _~)l
4 2 7j, 11=_ 7j, J

But sinc2 ( t»~b ) = 0 for t» = 2;; for all n_ 0 ,and =1for n= O. Hence,

Sy(t») =7b sinc2 (t»7b) + .!.B( t»)
4 2 2

"R.&
Fia·57.2·1

,.l.r
b:~ob(,

___ eJ '" - Off-
..........----.:- ,

o

For bipolar case [Eq. (7.20b)]

Sy(t») =Ip(t»t sin2 (t»16)
16 2

=16 sinc2
( t»~ ) sin2 (t»~b )

The P5Ds of the three cases are shown in Fig. 57.2-1. From these spectra, we fmd the bandwidths for all
three cases to be Rb Hz.
The bandwidths for the three cases, when half·width pulses are used, are as follows:
Polar and on·off: 2Rb Hz; bipolar: ~ Hz.
Clearly, f"r polar and on·offcases the bandwidth is halved when full·width pulses are used. However, for
the bipolar case, the bandwidth remains unchanged. The pUlse shape bas only a minor influence in the

bipolar case because the term sin2 (t»l ) in Sy(t») determines its bandwidth.

l'
SjlU')

S6



7.1-1

YH:)

(b)

Fie. 57.1-1

(
t+.!i] (t-.!i]p(t)-- ,%4 __ ,%4

and

P(",) =tSinC ( "':0 )e1fl)7b /4 + t SinC ( "'1)e- jfl)7b/
4

=j16 sinc ( O1:b ) sin (
011)

S( ) Ip(01t 1i . 2 ("'Tb ) • 2 (~)y '" = = b sIDe - SID16 4 4

From Fig. 57.2-2, it is clear that the bandwidth is 4" rad I s or 2~ Hz.
16

7.1-3 For differential code (Fig. 7.17)

!l{J = lim ..!...[.!(1)2 + N (-1)2J =: I
N-+«l N 2 2

To compute Rt , we observe that there are four possible 2-bit sequences II, 00, 01, and 10, which are

equally likely. The product 0kok+1 for the fU'St two combinations is I and is -I for the last two
combinations. Hence,

Rt = lim ..!...[~(l)+.!(-I)J= 0
N-+rs> N 2 2

Similarly, we can show that Rn =0 II> I Hence,

Sy(").I~t •(!f-) smc' ("n
7.1-4 (a) Fig. S7.2-4 shows the duobinary pulse trainy(t) for the sequence 1110001101001010.

(b) To compute Ro, we observe that on the average, half the pulses have ak =oand the remaining half

have Ok =I or -I. Hence,

. 1 [N 2 N ] 1Ro = hm - -(±I) +-(0) =-
N-+«l N 2 2 2

To determine RI' we need to computeakak+1' There are four possible equally likely sequences oftwo bits:

11,10,01,00. Since bit 0 is encoded by no pulse(ak =0), the product of 0kok+l =ofor the last three of

these sequences. This means on the average 'E:!- combinations have akok+l =0 and only N combinations
4 4
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have nonzero akak+I' Because ofthe duobinary rule, the bit sequence 11 can only be encoded by two
consecutive pulses of the same polarity (both positive or both negative).
This means ak and ak+l arc 1and 1or -1 and - 1 respectively. In either case akak+l =1. Thus,

these: combinations have akak+) .. 1. Therefore,

R) = lim ..!.[N (1)+~(O)]"'!
N-'rI:J N 4 4 4

To compute R2 in a similar way, we need to observe the product akak+2' For this we need to observe all
possible combinations ofthrcc bits in sequence. There are eiaht equally likely combinations: 111, 101,
110, 100,011,010,001, and 000. The last six combinations have either the first and/or the last bit O.
Hence, akak+2 =0 for all these six combinations. The fn two combinations arc the only ones which

yield nonzero akak.2' Using the duobinary rul:, the flfSt combination is encoded by three pulses of the

same polarity (aU positive or negative). Thus ak andak+2 arc 1 and I or -1 and -1, respectively, yielding

akak+2 = 1. Similarly, because oCthe duobinary role, the fIrSt and the third pulses in the second bit

combination 101 are ofopposite polarity yielding akak+2.=-I. Thus on the average, akak+2 =1 for
N N 3N "
- terms,-) for- terms, and 0 for-terms. Hence,
884

. 1 [N N 3N]R2 = lun - -(1)+-(-1)+-(0) == 0
N-.c N 8 8 4

In a similar way we can show that Rn =0 n> 1, and from Eq. (7.1 Oc), we obtain

I ~2 I ~2~w ~~ ~
S (w) = (1 +cosw7b) = cos2(_b)

y 2T" T" 2

1 1 1 0 0 0 1 1 • 1 0 0 1 0 1 0

Fia- 57.:1-4

For half-width pulse P(t) ... rect(2t /T,,).

S () T". 2 (tDT,,) 2 (tD7b)
Y tD =-smc cos

4 4 2

From Fig. S7.2-4 we observe that the bandwidth is approximately Rb /2 Hz.

7.3-1 From Eq. (7.32)
(1+,)6000 1

4000= =:>,=-
2 3
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7.3-2 Quantization error AV =mp S O.Olmp => L ~ 100
2 L

(a) Because L is a power of 2, we select L ... 128 ... 27

(b) This requires 7 bit code per sample. Nyquist rate =2 x2000 ... 4 kHz for each signal. The sampling
rate I, =125 x 4000 = 5 kHZ.
Eight signals require 8 x 5000 ... 40,000 samples/sec.
Bit rate ... 40,000 x 7 ... 280 kbits/s. From Eq. (7.32)

BT.(I+')~ =l.2x280xlo3 =168kHz.
2 2

7.3-3 (a) BT =2Rb => Rb =1.5 kbitsls.

(b) BT'" Rb => R" =3 kbits/s.
1+, 1.25 .

(c:) BT • 2 R". Hence, 3000 =T R" => Rb =4.8 kblts/S.

(d) BT =Rb => R" =3 kbits/s.
(e) BT =Rb ~ Rb ... 3 kbits/s.

7.3-4 (a) Comparison of P(t'l» with that in Fig. 7.12 shows that this p(t'l» does satisfy the Nyquist criterion with

t'l>b = 21r )( 106 and, ... 1. The excess bandwidth t'l> x ... 1r X106.
(b) From Table 3.1, we fmd

P{t) =sinc2 (1rX 106t)

From part (a). we havet'l>b =21rx 106 and Rb =106. Hence. 7j, =10-6. Observe that

p(nTb )-1 n=O
-0 ,,_0

Hence pet) satisfies Eq. (7.36).

(c:) the pulse transmission rate is..!.. =Rb =106 bits/so
Tb

7.3-5 In this case ~ =1MHz. Hence. we can transmit data at a rate Rb =2 MHz.

Also. BT ... 12MHz. Hence, from Eq. (7.32)

1.2 x 106 .. 1;, {2x 106)=>, =02

7.3-6 h =700 kHz. AlSO,.!} =500 kHz and Ix ... 700- 500 - 200 kHz.

Hence, r ... -.i.L. =0.4 and II =Rb - Ix ... 500 - 200 ::: 300 kHz.
~/2 2

7.3-7 To obtain the inverse transform of P(CI). we derive the dual ofEq. (3.35) as follows:

g{t - T) <:> G(t'l>)e-}TAI andg{t + T) <:> G(t'l»eiTAI

Hence,
g(t + T) +g(/- T) <:> 2G(aJ) cosTt'l>

Now, p(t'l» in Eq. (7.34a) can be expressed as

p{CI) ::: 1. rec{-!!!-) +.!.m:t(~)co{~)
2 41rRb 2 41tRb 2Rb
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7.3-8

7.3-9

Using Pair 17 (Table 3.1) and Eq. (1) above, we obtain

p(/). Rbsinc (2trRb/)+tSinC [2K~(/+2~J]+l}SinC[2tr~(/-2~b)]

• ~[SinC (2K R"/)+iSinC (2K~1+ K)+ tSinC (2K Rbi -K)]

[
Sin(2trR"l) 1 sin(2trRbl+tr). ·1 Sin(2trRbl-K}]

=R" + .fL
2tr Rbi 2 2trR"I + K 2 2K~I - K

=R,,[Sin(2trRbl) _! Sin(2KR"I) _ 1 Sin(2tr~I}]
2trRbi 2 2trRbI + tr 2 2trR"I -K

R . (2 R)[ 1 1/2 1/2]• b sm tr bl - - - -:-----:-
2tr~I (2trR"I +tr) (2K ~I- tr)

= Rb sin(2tr~J (1 2)]12trR,,11-4R,,2,

2RbCOStrRb/sintrRb' R"COStrRb'· ( R )= = smc tr bl
2tr R,,1(1_4~212) 1-4R,,2/2

Hence,

P(I)" sinc (tr Rbi) +sinc [trR,,(I- ~J]

sin trRbi sinetr R"I -tr)
== + _:.-..~.-..;..

tr Rbi tr Rbi - tr

• sin tr R"I _ sin K Rbl:= sin K R"t
tr~I trRbi -tr trR"I(I- Rbi)

The Nyquist interval is~ =.L a 1b. The Nyquist samples are p (±"16) for,,:= 0, 1,2, .
Rb

From Eq. (7. 16}, it follows that

p(0) • p(16) =1 and p(±nTo)=0 for all other n.

Hence, from Eq. (6.10) with T, =16, and B =~:= _1_.
2 21b

p(t). sInc "/lol +sine ["11>('- ~)]
== sin KRbi _ sin KR"I == sin KR"I

tr Rb tr Rbi - tr tr Rbl(l- Rbi)

60
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The Fourier transfonn of Eq. (l) above yields

p(tV) •_Irect(~)+_Ireet(",,!!-}-jOJ/~
R" 211' Rb R" 211' R"

• _1rea(--!!'-) [ejOJ/2~ +e-JOJ/2~ Je-jOJ/2~
Rt, 21rRb

2 {tV) {tV }-fOJ/211.• -co - ret -- "0
Rb 2Rb 21rRb

7.3-10 (a) No error because the sample values ofthe same polarities are separated by even number ofzeros and
the sample values ofopposite polarities are separated by odd number ofzeros.
(b) The fU'St sample value is 1 because there is no pulse before this digit Hcnce the first digit is 1. The
detected sequence is

11000100110110100

7.3-10 The fU'St sample value is 1, indicating that the transmissions starts with a positive pulse, that is, fll'St digit 1.
The duobinary rule is violated over the digits shown by underbracket.

12000 -200 -20;Z0~ -~0220-2

Following are possible correct sample values in place ofthe 4 underbracket values: 220 -2, or 2 0 -2 -2,
or 0 00 -2, or 2 0 0 O. These sample values represent the following 4 digit sequence: 1100, or 1000, or
0100, or 1010. Hence the 4 possible correct digit sequences are

where 11Xll)~ is any ofthe four possible sequences 1100.1000.0100. or 1010.

FII-57.4-1

S· 101010100000111
From example 7.2

T = (I $ D3$ DSED D6 ED D9 ED DJO ED DJJ $ D12 ED DJ3 ED D1S ED...)S

R =(lED D3$ DS)T

T· 101110001101001
R =101010100000111 =S

7.4-1

S· 101010100000111

T. (lED D2 $ D4 $ D6 $ DB $ D10 $ Dl2 ED DI4 $ ...)S

R • (I ED D2)T (see Fig. 57.4-2)

T .. 1000100000oo110
R = 101016100000111. S

7.4-3 S -101010100000111

T- (l$ D$ D2 $ D4 $ D' ED DB $ D9 $ DJ1$ D14 )S

R.{I$D$D3)T (seeFig.S7.4-3)

T =110111101001011
R • 101010100000111 "" S

7.4-2
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T R .!

7.5-1 From Eq. (7.45), we obtain

[
C_l] [ I
co'" 0.1
cl ~.002

A
7.6-1 (a).J!.. =5

un

FII·57...3

0~3 _~~7]-1[~] =[~~~8]
0.1 I 0 ~.l13

(i) Forpolarcase p. -Q(5)=2J7 x I0-7

(il) Foron-otTcase P, -Q(5/2)=0.00621

(iii) For bipolar case p, =1.5Q(5/2) =0.009315

In the following discussion, we assum~ Ap =A, the pulse amplitude.

(b) Energy ofeach pulse is Ep =A2 Tb 12 and there are Rb pulses/second for polar case and ~
pulses/second for on-otT and bipolar case. Hence, the received powers are

A2r. A2 (0.0015)2
Ppolar =~R" =-. =1.125 x 10-6

222

A216 R~ A2
-6

Pon-oft' = x -"- =- = 0.5625 x 10
2 2 4

A2Tb ~ A2
-6

l\ipolar = 2 )( 2 =""4" 0.5625 x 10

(c) For on-otT case:

We require Pee) - 2J7 x 10-7 • Q(Ap 12u,,). Hence,

Ap 12u". 5 andAp =lOu" =0.003

A2 (0.003)2 -6
Pon-otf =-. =225)( 10

4 4
For bipolar case:

A
pCe):a 2J7)( 10-7 =I.sQ(Ap 12u,,) =>.J!.. ... 5.075

u"
Hence

A =Ap =5.075 x 2u" =0.003045
and

7.6-2 For on-otT case:

P, =10-6 S ,./~) => Ap ~ 4.75
~20'n 20'n
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all =10-3 = Ap ~(4.7SX2)(10-3)"9.5)(10-3

for on-off case, half the pulses are zero, and for half-width rectangular pulses, the transmitted power is:

I(A 2) A2 (95)(10-
3)

S; .. - :.:.P- .. :.:l!.- = = 22.56 )( 10-6watts.
2 2 4 4

There is an attenuation of30 dB, or equivalently, fa ratio of 1000 during transmission. Therefore

Sr -IOOOS; = 22.56)( 10-3 watts

7.6-3 For polar case:

Pe _10-6 =,.[~)= Ap =4.75= Ap =4.75)(10-3
~lall all

For polar case with half-width reetanaular pulse:

(

A 2) 2 .
S; ... T -i(4.5)(10-3) =11.28xl0-6 watts

Sr = (I000Xll.28)( 10-6W) ... 11.28)( 10-3 \yatts

For bipolar case:

Pe = 10-6 = 1crl Ap )= Ap =4.835 andAp =4.835)(2)(10-3 .. 9.67)( 10-3
""'¥l2a" 2a"

For bipolar (or dUobinary), half the pulses are zero and the receive power S; for half-width rectangular
pulses is

A 2 1 2
s;.. : = 4(9.67)( 10-3) .. 23.38)( 10-6 watts

Sr .. (IOO0)S; .. 23.38)( 10-3watts

7.7-'1 Sampling rate = 2)( 4000)( 1.25 .. 10,000 Hz.
m

Quantization error'" { .. 0.00 Imp ::> L = 1000

Because L is a power of2, we select L .. 1024 = 210. Hence, n = 10 bits/sample.

(a) Each 4-ary pulse conveys 1082 4 .. 2 bits of information. Hence, we need~ .. 5 4-ary pulses/sample,
2

and a total of5)( 10,000 = 50,0004-ary pulses/second. Therefore, the minimum transmission bandwidth is

50,000 .. 25 kHz. .
2

B R" (1 +,) 50,000(1.25) 3.2 kHz.
(e) r = .. - 1 S

2 2

7.7-3 (a) Each S-ary pulse carries 1082 8 = 3bits of information. Hence, the bandwidth is reduced by a factor of
3.
(b) The amplitudes of the 8 pulses used in this S-ary scheme are±A/2, ±3A/2, ±SA/2, and ±7A/2.
Consider binary case using pulses ±A /2. Let the energy of each of these pulses (ofamplitude ±A /2 )
be Eb' The power ofthis binary case is

l\iuy =EbR"

Because the pulse energy is proportional to the square ofthe amplitude, the energy ofa pulse ±~ is

/(2 Eb' Hence, the average energy of the 8 pulses in the 8-ary case above is
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Hence,

Therefore,

".1f)I =7 l\il1ll')'

7.7-1 (a) M =16. Each l6-ary pulse conveys the infonnation oflog2 16 ... 4 bits. Hence, we need
12000
-'4- =3000 16-ary pulses/second.

Minimum transmission bandwidth =3000 • 1500 Hz.
2

2
(b) From Eq. (7.32), we haveR" --Br. Hence,

1+,
2

3000 - 1.2 Br =Br =1800 Hz.

7.7-4 (a) For polar signaling, Rbbits/second requires a bandwidth ofRb Hz. The half-width rectangular pulse of

amplitude~ has energy
2

E
b

_ (~)2 7b =A
27b

2 2 8

A21j A2
The power P is given by P =EbRb ...~ Rb =-

8 8

(b) The energy ofa pulse ±~ is k2Eb• Hence the average energy of the M-ary pulse is

EM. ~[2Eb +2(±3)2 +2(±5)2+.....+2[±(M -I)t Eb]

M-2

=2Eb t (2k + 1)2
M t-O

M2 _1
.~Eb

Each M-ary pulse conveys the infonnation oflog2 M bits. Hence we require only Rb M-ary
log2 M

pulses/second. The power PM is given by

P = EM& • (M2
-1)Rb E

b
=(M2

-I)A
2

== M2A2

M 1012 M 310g2 M 241012 M 2410g2 M

7.7-5 Each sample requires 8 bits (256 - 21). Hence: 24,000)( 8 =192,000 bits/sec.
Br -30kHz

2 2
R=- Br 0= -1(30,000) =50,000 M-ary pulses/sec.

1+, .2
We have available up to 50,000 M-ary pulses/second to cransmit 192,000 bits/sec. Hence, each pulse must

. I (192,000) 384b'transmIt at east ... Its.
50,000
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= choose 4 bits/pulse=M • 16 is the smallest acceptable value

7.8-1 (a) Bueband polar sip at a rate of 1Mbits/sec
and using full width pulses hasBW =IMHz. PSK
doubles the BW to 2MHz.

(b) FSK can be viewed as a sum of2 ASK signals.
Each ASK signal BW ... 2 MHz. The first ASK signal
occupies a band I cO ±1MHz, and the second ASK
signal occupies a band lei ±1MHz. Hence, the
bandwidth is 2 MHz + 100 kHz ... 2.1 MHz.

FiC·57.8-1

7.8-2 (a) A baseband polar signal at a rate 1 Mbits/sec using Nyquist criterion pulses at , =02 has a

BW= (1+,) R" .12 xl06 =6.0xl0'Hz.
2 2

PSK doubles BWto 1.2 MHz.

(b) Similar to Prob. 7.S-1.

BWFSK = 0.6 MHz +0.6 MHz +100kHz

BWFSK =1.3 MHz

7.8-3 log2 M ... 2 for M =4.

We need to transmit only OJ xl06 4-ary pulses/sec
(a) BW is !educed by a factor of2.

BWFSK '" 1MHz
(b) In FSK, there are four center (carrier) frequencies
lei, fe2' 1c3' and/e4' each separated by 100kHz.
Since ASK signal occupies band Ie ±OJ MHz, the total
bandwidth is
OJ MHz +0.5 MHz + 100kHz +100kHz + 100kHz =1.3 MHz.

Fie. 57.8-3

7.9-1

",...H·) ---.....""'----,

"'.z.L't) ----t-..,
WI~lt) ---,

''',,,It) I

6S



"'.rt)---."."'--------~-.
,/ ~' " '----I
\ tc. /' I:;-1 ')

ma.l-t.)-- ,.~/-t~_,_,~----....-r 4.: 7.100 roi.i''Wl1\;{'L

M~-t)~,~,~ ~ \ 1J

"- "'.
V\tH)~

Fla. (b)
Fla. 57.9-1

Either figure (a) or (b) yields the same result.

ml(t) has 8400 samples/sec.

mz(t). m3(t). m..(t) each has 2800 samples/sec.
Hence. there are a total of 16.800 samples/sec.

7.9-2 First. we combinem2(t). m3(t). and m4(t) with a commutator speed of700 rotations/sec. This combined

signal is now multiplexed with ml (t) with a commutator speed of2800 rotations/sec. yielding the output of
5600 samples/sec.

t.DWlM~ c;~

1, c:: 21DO roTatioflS
') sec..

Fia·57.9-2

66



7.9-3

M.l-t:"')
of:.) -.:: 72fi>

of. :::. 2. J &00 r~(":>

" QUt1,,1;~r
~.i kb/.s c.. I

> • g.

ot:; :2-¥Co
Cll r ......

'~2fof\ "Gl.itf,,,tlF,r ~1·{.1rtb £
~ 0 ~

~::2.'HJl'J
r

'((\-if::'> Dt1tfJ~t-

G.\itft;t,1:1.(" ~"~
'> • ~

Cohr ,:zq'b /tb/S
,

/"-. - ,/

""4l~)
'&-.24C{I

t'il:cJ4~'1J1I...6 21·'~,s
~ • a.

Q:leJe(,

AHerV1~ a ('r tH''1~ f71~" r ctt)

Fla 57.9-3
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Chapter 8 Exercises

tU-l If a plesiochronous network operates from Cesium beam clock which is accurate to ± 3 parts
in 1012, how long will it take for a DS3 signal transmitted between two networks to become out'
of sync if a 1/4 bit length time error results in desynchronization?
Solution: A DS3 bit is transmitted in 1/(44.736.106

) =2.235336.10-8 sec. In the worst case,
both network clocks will be out of synchronization by 6 parts in 1012.

2.235336.10-8/(6.10.12
) =3922.27 seclbit or 980.57 sec/IA bit

8.1-2 For the bit stream 011100101001111011001 draw an AMI waveform.
Solution:

Note that typically, for illustrative purposes, the waveform is given as

8.1-3 For the following waveforms, determine if each is a valid AMI format
for a DS1 signal. If not, explain why not.

a.

J"lJllllllllllllllllnllll U
Solution: No. 16 O's violation

.'
,\,""

Solution: No. bi-polar violation
c.

J"lJllllllln'IIIIIIIIIIII U
Solution: No.1' s density violation

d.

J"lJlllllllnIIIIIIIIIU'111

Solution: Yes
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8.1-4 a) You have received the following sequence of ESF framing pattern seQ.uence bits

...00110010110010110••.

Is this a'legitimate framing bit sequence in order to maintain
synchronization between the Tl transmitter and receiver?
Ye5__No__

H yes, why? H no, why not?
Solution: No. The bit sequence 0011 cannot be in an ESF framing bit sequence.

b) The following Tl AMI signal is received:

,.... - I""- -

-- -- - --
Is this an acceptable Tl signal'?
Yes_No, _
a. H yes, explain.
b. If no, explain why not (what, if any, OS1 standards are violated) and

draw on the figure the AMI wavefonn which would be transmitted by the DSU?
Solution: No. 16 O's violation. The 16 O's will be replaced by a pattern of 1's by the
DSU.

8.1-5 The signal1l010000000000000001 is received by the DSU in a Tl data stream which uses a
B8ZS format. Draw the output of the DSU for this signal? The first 1 is already drawn.
Show the bit stream which is substituted by the DSU.

Solution:

8.1-6 T-l synchronization at two distant locations is controlled by separate crystal controlled
oscillators which differ in frequency by 125 parts per million. H the terminal equipment doesn't
maintain sync in how many complete D4 superframes will the faster oscillator have generated (at
most) one more time slot (8-bit) than the slower oscillator? Circle the correct answer.
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a) 5
b) 10
c) 15
d) 20
e) None of the above - if "none", what is the number of D4 superframes before an extra time slot
is generated? _

Solution: e) The faster oscillator will generate 125.10-61.544.106 =193 bits per second more
than the slower oscillator. This is one frame/sec =24.125 time slots. Hence, a time slot
difference will be generated in 1/24.125 =0.04164498 frames or 0.0034704 superframes. .r

8.1-7 Two plesiochronous digital networks, A and B, utilize Cesium beam clocks accurate to 3
parts in 1013

• The networks are operated by independent long distance companies and are
synchronized to each other by means of a UTe signal.
a. If a company leases a T1 line with D4 framing which is tenninated at one end in

network A and at the other end in network B, how often must the networks be resync'd to
each other to avoid a framing bit error in the customers Tl signal in the worst case? {You
may assume a framing bit error occurs when the two networks are out of sync by ~ 1/2 of
a T1 "bittime".}
Solution: A Tl bit time is 1/0.544.106

) =6.47668.10.7 seclbit. In the worst case, the
two clocks would be off by 2·3 ~ 6 parts in 1013 or 6.10.13 errored bits per bit transmitted.
Hence, 6.47668.10.7 seclbit 16.10.13 errored bits per bit =1.07945.106 seconds per errored
bit or 5.39723.106 seconds per errored half-bit.

..
b. UTe operates via GPS satellites which are approximately 23,000 miles above the Earth.

How long, in terms of Tl bits, will a correction signal take to be transmitted to
the network switches?
Solution: The speed of light is approximately 186000 miles/sec.
23000x2 =46000miles up and down. 46000/186000 =0.247 sec

0.247x1544000:: 381850 bits
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Chapter 10

10.1-1 (a) p(redcard)=~=.!.
52 2

1+ 1 I
(b) P(black queen) = 52 =26

(e) P(picture card) =g =2
52 13

4 1
(d) P(7)- S2 =13

20 5
(e) P(nsS)-Si-j3

10.1-2 (a) S =4 occurs as (1,1,2),(1,2,1),(2,1,1). There are atotal of6x 6x 6= 216outeomes.

Hence, p(S:;; 4) =-.!...._1
216 72

(b) S =9 occurs as (1,2,6), (1,3,5), (1,4,4), (1,5,3), (1,6,2), (2,1,6), (2,2,5), (2,3,4), (2,4,3), (2,5,2), (2,6,1),
(3,1,5), (3,2,4), (3,3,3), (3,4,2), (3,5,1), (4,1,4), (4,2,3), (4,3,2), (4,4,1), (5,1,3), (5,2,2),
(5,3,1), (6,1,2), (6,2,1)

25
P(S:;;9)- 216

(e) S =IS occurs as (3,6,6), (4,5,6), (4,6,5), (5,4,6), (5,5,5), (5,6,4), (6,3,6), (6,4,5), (6,5,4), (6,6,3)
10

peS - 10) =216

10.J-3 Note: There is a typo in this problem. The probability that the number i appears should be ki not kj •

6 I
1= rki =k +2k+3k+4k +5k+6k :;;21k =k =-

;=\ 21

P(i) :;; ;1 (i =I, 2, 3, 4, 5, 6)

10.1-4 We can draw 2 items out of 5 in 20 ways as follows: 0,02,0103, 0IP" 01P2, °20" 0203, 02P" 02P2, 03°" 03~.

03P" 03P2, Plo .. P102, PIO" PIP2, P20" P2~, p2o" P2P,. All these outcomes arc equally likely with
probability 1120.

(i) This eventE\ = 0\1\ UO\~ U021\ U02~ U03P\ U03~ UI\Ot UP\02U1\03UP:z0\ UP202 UP203

Hence, P(E\)=g=~
20 5

(Ii) This event E2 • 1\ P:z U~1\
2 I

Hence, P( E2) =20 =10

(iii) This event E3 =0\02 UO\03 U020\ U0203U030t U0302
6 3

Hence, P(E3) = - "'-
. 20 10

(iv) This event E4 '" E2 UE3 and both E2&. E3 are disjoint.

Hence, P(E4 ) =P(E2 )+ P(E3) =I~ :=t
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10.1·5 Let xo\ be the event that the flJ'St chip is oscillator and x1\ be the event that the fIrSt chip is PLL. Also,

let x02 and x Pj represent events that the second chip drawn is an oscillator and a PLL, respectively. Then

P(I osc and 1 PLL) '"' 1'(xo1,xPj) +p(xl\'~)

=p(xo\ )p(xPj Ixo\)+ p(xl\ )p(x~ IXI\)

(lx~)+(~xl)= ~
5 4 5 4 5

10.1-6 Using the notation in the solution ofProb. 10.1-5, we find:

(a> p(xO:z Ix1\) =~

(b) p(xO:z Ixo\) =~

10.1·7 (a) We can have(1~) ways of getting two 1'5 and eight 0'5 in 10 digits

(10)= 10! -45
2 2!8!

P (two 1'5 and eight 0'5) 0= 45(Ojt(O.~t .. 45(Ojt _ 4~ ..~
2 1024

(b) peat least four 0'5) "" I-[P(exactlyone 0)]+[P(exactly two 0'5)]+[P(exactly three O's)]

p(one 0) =(IPVO.5)IO =-.!!..;; _5_
l' 1024 512.

P(twoO's) = (If\io.s)IO=~
I' 1024

P (three 0'5) '"' (1f"'O.s)IO '"' 120
}\ 1024

(
5 45 120 ) 849P(atleastfourO's)-I- -+--+-- ---

512 1024 1024 1024

10.1-8 <a) Total ways ofdrawing 6 balls out of49 are

( ~) = 49! =13,983,816
6!43!

Hence, Prob(matehing all 6 numbers)- 1 ~.
13983816

(b) To match exactly 5 number means we pick 5 ofthe chosen 6 numbers and the last number can be

picked from the remainina43 numbers. We Cart choose 5 numbers ofour 6 in(f) = 6 ways and can choose

one number out of43 in(4?) '"' 43 ways. Hence, we have 43 x 6 combinations in which exactly 5 numbers

match. Thus,

P(matehing exactly 5 numbers)= 43 x
6 =1.845 x 10-S

13983816

(c) To match exactly 4 numbers means we pick 4 out of the chosen 6 number in(:) =15ways and choose

2 out of the remaining 43 numbers in (4j) =903 ways. Thus there are 1Sx 903 ways ofpicking exactly 4

numbers out of6 and
. 15)( 903 -4

P(matchmg exactly 4 numbers). 13983816 =9.686 x 10
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(d) Similarly, we can pick three numbers exactly in(~X4J) = 20x 12341 = 246820 ways. Hence,

. 246820
P (matchmg exactly 3 numbers) = • 0.0176S

13983816

10.1-9 (a) Let f represent the system failure. Then

P(i)= (1_0.01)10 =0.90438

P(f) =1- P(i) =0.0956

(b) p(i):: 0.99 and P(f) "" 0.01

If the probability of failure ofa subsystem Sj is p, then

P(i). (1- p)'D or 0.99. (1- pt=p.0.0010045

10.1-10 Iff represents the system failure andfu andfL represent the failure ofthe upper and the lower paths,
respectively, in the system, then:

(a) P(f):: p(fufd =p(fu)P(fd =[P(fu)t

P(fu) =1- p(ill):: 1-(1-0.01)10 :: 0.0956

and

P(f) =(0.0956)2 :: 0.009143

Reliability is P(i):: 1- P(f) =0.9908

(b) P(i) =0.999
P(f) =1-0.999 :: 0.001

P(fu)= .JO.OOI =0.0316

PUll) =(1- p)10:: 1-0.0316~ P=0.003206

10.1-11 Let P be the probability of failure ofa subsystem (SI or $2) .
For the system in Fig. a:
The system fails ifthe upper and lower branches rail simultaneously. l'1!e probability of any branch not
failing is

(1- P)(l- p) = (1- p)2. Hence, the probability ofany branch failing is 1- (1- p)2.

Clearly, PI' the probability of the system failure is p/ • [1-(1- p)211-(1- p)2];; 4p2 P« 1

For the system in Fig. b:
We may consider this system as a cascade of two subsystems Xl and .12 , where .I. is the parallel combination

ofsl and $1 and .12 is the parallel combination ofs2 and $2' Let p/ (Xj ) be the probability of failure of.1'l .
Then

P/(XI):: P/(X2) =p2

The system functions ifneither XI nor .12 fails. Hence, the probability ofsystem not failing

is (1- p2 )(1- p2 ). Therefore, the probability ofsystem failing is

p/ =1-(1- p2X1- p2)=2p2_ p4 ;;:2p2 P« 1

Hence the system in Fig. a has twice the probability offailure of the system in Fig. b.
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10.1-12 There are (Sf) =2598960 ways ofgetting 5 cards out of 52 cards. N~ber ofways ofdrawing 5 cards of

the same suit (of 13 cards) is(1l) =1287. There are 4 suits. Hence there are 4 x 1287 ways of getting a

flush. Therefore,

P(flush) =4)( 1287 = 1.980ax 10-3
2598960

10.1-13 Sum of 4 can be obtained as (1,3), (2,2) and (3,1). The two dice outcomes are independent. Let XI be the
outcome of the regular die and.%J be the outcome of irregular die.

1 I 1
PXJ%2 (1,3) =pot\ (I)P%2 (3) ="6)( '3 =ii

I
pot\%2 (2.2) =P.q (2)P%2 (2) ="6 x0=0

1 1 1
PXJ %2 (3,1) = pot\ (3)P%2 (1) ="6)("6 =36

1 1 1
Therefore ~(4)=-+-=

18 36 12
Similarly,

P'(S)- p.,•• (1,4) + p.". (2,3) + p.", (3,2) + p.'" (4,1)
I III III

--xO+-x-+-xO+-x-= -
6 6 3 6 6 6 12

10.1-14 B =ABUA c B

PCB) =P(A)P{B\A) + p(AC)P(~AC)

=(;6X5")+(~~X;I)= ;6
P(AIB)a P(AB) a (~H) =-!.

PCB) J.. 51
26

10.1-15 CI) Two 1'5 and three 0'5 in a sequence of5 digits can occur in(n =10ways. The probability one such

sequence is

p. (0.8)2(0.2)3 =0.00512
Since the event can occur in 10 ways, its probability is

lOx 0.00512 =0.0512

(b) Three 1'5 occur with probabilityUX0.8)3(0.2)2 =0.2048

Four I's occur with probability (1X0.8)4 (0.2) I • 0.4096

Five 1'5 occur with probability ( ~XO.8)S(O.2)O =03277

Hence, the probability ofat least three 1'5 occuring is
P = 0.2048 +0.4096 +03277 =0.9421

10.1-16 Prob(no more than 3 error)=p(no error) + P(1 error) + P(2 error) ~ P(3 error)

• (1- p')IOO +(lOO)P,(I- p')99 +OOO)p,2(1_ p')98 +OOO)p'3(1- P, )97

.. (l-l00Pe)+ l00Pe{l-99Pe )+4950Pe2(1 ... 98Pe)+ 161JOOP/(1-97 Pel
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10.1-17 Error can occur in 10 ways. Consider case of error over the first link

pc(correct detection over every link) =(1-1\ )(1- ~)...(1- Plo)

P£ =1-Pc =1-(I-I\XI-F.z)...(I-l\o)
=1-[1- (1\ +~+...+1\0) + higher order tenDs]

== PI +~+.. ·+l'J0 Pt «I

10.1-18 p(e). ±e)~J(I-p.)5-j =10P.3(1- p,)2 +SP,4(1_ p.)+ P,S
j=3

10.1-19 (a) P(success in 1 trial) =I~ ... 0.1

(b) P(success in S trials):= 1- P(failure in all S trials)

=1- Pit Ph PI3 Pi. PI,
PI) ... Prob(failure in I" trial). 9/10

Ph =Prob(failure in 2M trial) = 8/9

Similarly, Ph =7/8, PI. =6/7, andPfs =5/6

Hence, P(success in Strials) = 1-(.!.X!X7..X!X~)=1-1.. =0.5
10 9 8 7 6 10

10.1·20 Let xbe the event ofdrawing the short straw and the Pt (x) denote the event that ith person in the sequence
draws the short straw.
Now, 1'1 (x) =0.1

~(x) =Prob(11\ person does not draw the short straw»)( Prob(2nd person draws the short straw)

... [1-1\(x)]t .. (I~Xt) =0.1
Similarly,
P3(x) = Prob(neither I" nor 2M person draws the short straw»)( Prob(3n1 penon draws the short straw)

.. [1- ~(x)- ~(x)]i -(I~Xi)= 0.1
Similarly, P4(x) =Ps(x) =.... l'Jo(x) =0.1

10.1-21 All digits are generated independently

Ca) p(allIO digits are 0) ... (OJ)IO

(b) There areC~)ways ofamnging eight 1'5 and two 0'5. Hence,

p(cight 1'5 and two O's)=C~XO.7)I(03)2

(c) P(at least five O's).p(five O's)+p(six O's)+...+p(ten 0'5)

=(lfXo.7)S(OJ)S +cgXO•7)4 (0.3)6 +CY)(0.7)3(03)7+( 18Xo.7)2(03)1 + (18Xo.7)(03)9 + (03)10

10.2-1 Py(O) = Pxy(I,O) + Pxy(O,O) - Px(I)PYlx(ojl)+ Px (O)Pyjx(OI0)

... 0.6)( 0.1 +0.4[1- Py/x(IIO)]. 0.06+032 =038

Py(l) =1- Py(O) = 0.62
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Py/x(l,l)Px(l) (1- ~)Q
10.2-2 (a) Pxly(lll)- Py(l) =(I-Q)P,+(I-P,)Q

(b) Pxly(O\I) =1- Pxjy(I/I)

(note that Py(l) and Py(O) are derived in Example 10.10)

' .

."1

10.2-3

10.2-4

(a) p(x ~ 1) =r.!xe-Zdx =1.
1 2 e

Pro ( ) f 1 Z..I.. 1:1 -z I 3(b) b -1 < x S 2 = --xe '" + -xe dx =1----
-1 2 2 e 2e2

[
2 1 3

(e) Prob(xS-2)- --xezdx--2- 2 2e

Fil·510.2-4

o

Since this is a half-wave rectifier, YaSsumes only positive values. So.p(y < 0) =O.

Hence, Fy(Y) =0 (fory < 0) and P(y < 0+). f· Hence. Fy(O+) =f
10.2-5 x is a gaussian r.v. with mean 4 and u x - 3

Hence,

(a) P(X~4)=~4;4)_Q(0)=0.s

(b) P(x ~ 0) = ~0;4)= I-~i)= 1-0.09176= 0.9083

(e) P(x ~ -2) =~ -2
3
-4)., 1- Q(2) =1-0.0227S = 0.9773

" .

o

Fie- 510.2-5

10.2-' (a) From the sketch it is obvious that x is not gaussian. However. it is a unilateral (rec:tified) version of
Gaussian PDF. Hence. we can use the expression ofGaussian r.v. with a multiplier of2.
For a gaussian r.v.

p (y)= 1 e-z2132 withu .. 4
y 4& y

(b) Hence, (I) p(x ~ 1) =2P(y ~ 1) =2'"~)=OJ026

(il) P(l < x S 2) =2p(1 <y S 2) ={~~)-~~)]= 0.1856

(e) Ifwe take a Gaussian random variable y

Py(y) .. 4$e-i132 Fil·510.2-6

and rectify y (all negative ofy multipled by -1), the resulting variable is the desired random variable x.
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10.2-7 The volume V under pxy(x,y) must be unity.

V=l(1 x I)A =~=I, A=2
2 2

Px(x) =JPlCY(x,y)dy
y

But y =-x +1and the limits on y are 0 to 1- x. Therefore,

11-% {2(1-%) OS.t:S4
Px(x)", J~-.t 2dy ... 2 •

o 0 oIhawisc

{

2(I-y) OSy:S1

Similarly, Py(Y)'"
o odlcrwisc

P (x,y) 2 { III-y OSy:S1

PXly(x!y) = ;y(y) =2(1- y)'" 0 odlcJvisc

{

Ill-x OSx:S1

Similarly, pYlx('ylx)",
o od1erwisc

Clearly x and y are not independent.

Fi.. SI0.2-7

10.2-8

10.2-9

-(x2+i)/2
pxy(x,y)=xye u(x)u(y)

Ill) "_(x2+),2)12 _112/2
(a> px(x) ... 10 xy e u(x)dy =x e u(x)

2
Similarly, Py(y) =ye-Y /2u(y)

P (x,y) 2/2Px(xly=y)= xy =xe-% u(x)
Py{y)

and P (>'Ix =x) ... pxy(x,y) • ye-i /2u(y)
y Px{x)

(b) From results in (I), it is obvious that x and y are independent.

Therefore
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10.2-10 Kf:f:e_(:r2+.\)'+y2)~ =KI:e-:r2[I:e-i-X)'~~=1

But f: e-y2_~dy=J'ie,,2/4 and, KJ'iJ:e-3,,2/4ea =KJ'ii(fl.)=1

Because ofsymmetry ofpxy(%,y) with respect to x andy. Py{y) = f3'e-3i/4v4;'

{:r2+~+y2}
(

I..) _ pxy(x,y) _1 4"
PxlY %j.Y - () = ,...ePy y vtr

and

(,,2 2)
(
..I) pxy{x,y) 1 - '4 +X)'+y

Pylx ""IY = () .. .....,-e
Px % 1/tr

Since PlCY(%,y) - Px(%)Py(Y), X and y. are not independent

Fia·510.2-11

_ ( ) 1 -(:r-2)2/18
10.3-1 x=2, D'x=3, Px % =-:-E='e

3'1/2tr
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10.3-2 Px(x)'" !lxle-1zI
2

Because ofeven symmetry ofPx(x). X=0 and

x2 = 2J;x2Px(x)dr = 2J:x2'i xe-Xdt

=J: x3e-xdt =3! =6

x2 =ux
2 +x2 =u~ =3!=6

~)..
x.-->

Fig. SIO.3-2

10.3-3

10.3-4

10.3-6

The area of the triangle must be 1. Hence K=! and Px(x)", .!.(x+ 1)
2 8

( )

4
_ 3 1 1 y3 y2 1 64 16 5x=J xp (x)dt=-rty(y-I)dy=- --- =-(---) ... -

-1 x 8 Jo 8 3 2 8 3 2 3
o

( )

3
"2 1 3 2 1 x4 x3

x --1 x (x+I)dr-- -+-
8 -1 8 4 3_

1

_.!.[!!+ 27 _!+.!.] ... !!
8 4 3 4 3 3

u 2=x2_(x)2 .!!_ 25 ... !
x 399

"

12 1 2 3 4 5 6
x'" rx;px(x;) =-(2)+-(3)+-(4)+-(5)+-(6)+-(7)+

;.2 36 36 36 36 36 36
5 4 3 2 1 256

-(8)+-(9)+-(10)+-(11)+-(12) ... - ... 7
36 36 36 36 36 36

- 12 1 2 3 4 5 6
x2 ... rx? Px(x;) = -(4)+-(9)+-(16)+-(25)+-(36)+-(49)+

;=2 36 36 36 36 36 36
5 4 3 2 1

-(64) +-(81) +-(100)+ -(121)+ -(144) =54.83
36 36 36 36 36
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10.3-7 x" = &Loo
x"e-.r

2
12a:dr. Fornodd, the integrand is an odd function ob. Therefore x" = O.

ax 21r -GO

For n even, we fmd from tables

_ {(l)(3)(S)_(II-I~ . II even
XII =

o " ~

Fil·510.4-1

i =1,2, ... , 10

Let Xi be the outcomes ofthe ith die. Then,
_ 1+2+3+4+5+6 7
x· = =-, 6 2

2' 12+22+32+42+52+62 91
x· = =-166

2 2' (_)2 35
CfXi • Xi - Xi =i2

Ifx is a RV representing the sum, then

x- Xl +X2+"'+X10 =l{i)=35

Cf; =a~ + Cf~ +...+Cf~ =1"/35) =175
I 2 10 ~12 6

x2 =0'; +x2 = ~+(3S)2 = 1254.167
6

~
~f'~) ••. :

.........; I

".;.f___ ' ..

---~o .1 ~

10.3-8

10.4-1

10.4-1 Px(x) =0.46(x)+0.66(x-3)

1 2 1
Pn(n) =2Se-

1I
1

and

() 1 _y2/1 3 -(y-3)2 /1
pyy=~e +~e

)otJ2" lW2"
FiI·510.4-2

10.4-3 px(.r) =Qt5(x -1)+(1- Q)t5(x + I), Pn(n) =P6(n-I)+(I-Q)6(n+ I)

Py(y) =[Qt5(y-I)+(I- Q)t5(y+ 1)]·[Pt5(y-l)+(I- p)t5(y+ 1)]

=(P+ Q-2PQ)t5(y) + PQ6(y-2) +(1- P){I- Q)t5(y+2)
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•

10.4-4 pz(Z) =Px(x)* Py(y)
Taking Fourier transfonn of both sides, we have

Taking inverse Fourier transfonn we get

( )
I -{Z-{I+y)]2/2(~+~)

Pz Z = e
~2n{tT~ + tTn

It is clear that z=x + y and C7~ • C7~ +~

:--------:2 "
10.5-1 For any real a, [a(x- x)-(y-y)] ~ 0, or a2tT~ +tT; -2atTxy ~ O. Hence, the discriminant of this

quadratic in a must be nonpositive, that is:

4tT~ - 4tT~tT~ SO, that is, ItTxy lSI or IPI S 1
tTxtTy

10.5-2 When y =K\x + K2 Hence, y:: K\x + K2

tT; • KftT; and tTxy = (x-x)(y- y) = (~x-.~x)~(K-\-x-+-K-2---K-\X-.-K~) =K\tT~. Hence,

Pxy = tTxy :: KltT~ / K\tT~ =1 if K\ is positive. If K\ is negative, tT.I)' :: K\tT; is negative.
tTxtTy

But tTx and tTy are both positive. Hence, Pxy =-1

10.5-3 x= r2Jr
cosOp(O}iO:: _1 r2Jr

cosO dO = 0 Similarly, y=0Jo 2"JO

tT.I)' =xy ... cosOsin 0 =.!.sin20 = .!.J;Jr sin 20p(O}iO = _1J;6 sin 20dO :: 0
2 2 4"

Hence, tTxy =XY... 0 and x, y are uncorrelated. But x2 + y2 =1.

Hence, x and y are not independent.

JO.6-J In this case

Ru =R22 =R33 =ml- Pili
R\2 =R2\ ... Rn =R32 ... Ro\ =OJ2SPIII
R\3 ... R31 =Ro2 =0562PIII
Ro3 =0.308PIII

Substituting these values in Eq. (10.86) yields: a\ ... 1.1025, a2 =-02883, a3'" -0.0779
From Eq. (10.87), we obtain

6
2 =[1-(O.82Sa\ +0.562a2 +0.308a3)]PIII ",,027S3PIII

Hence, the SNR improvement is

1010..{ Pili ):: 5.63 dB.
'027S3PIII
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Chapter 11

11.1-1 This is clearly a non-stationary process. For example,
amplitudes of all sample ftmctions are zero at same
instants (one is shown with 1 dotted lind). Hence, the
statistics clearly depend on t.

11.1-2 Ensemble statistics varies with I. This can be seen by
ftnding
- ----,.-- (tOO
x(t) =Acos(at+O) =A Jo cos(~+O)P(tl))dtl)

=~ r
o
1oo

cos(at + 01Jtl). This is 1 function of t.
lOOt J.

Hence, the process is non-stationary.

11.1-3 This is clearly a non-stationary process since its
statistics depend on t. For example, att =0, the
amplitudes ofall sample functions is b. This is not
the case at other values of t.

I
I
I

/';. /\. /\.

Fia. SI1.1-1

Fla. 511.1-2

~eor:::,
fla. SU.I-3

11.1-4 x(t) = acos(~ + 0)

x(t) == acos(~ + 0) =acos(~ + 0) =cos(ox + 0) tAaP1(a)da

=[cos(~ + 0)/2AJ I~A ada =0

Rx (tt,t2)·.2 cos(4tt +0)COs(4t2 +0). COs(4tt +0)Cos(~2 +0)12

A a2
=cOs(OXt +0)Cos(t»t2 +0) LA tta

A2
::3cos(~t +8)COs(t»t2 +8)
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11.1-5

..

11.1-6 X(I)'" 81 +b =It +b. But a=0 Hence, %(1) =b

- 2' 2 2 1 a312 4Also, a=O, a = L2a p{a)da--- -
4 3 -2 3

Rx(II.t2) =(811 +b)(812 +b) =a2'1'2 +a(11b+t2b)+b2

=a2'1'2 +~(Il +12)+b2 =i '112 +b
2

3

11.1-7

(d) The process is W.S.S. Since x(t) =°and Rx(11o'2) =.!.
3

(e) The process is not ergodic since the time mean ofeach
sample function is different from that of the other and it is

not equal to the ensemble mean (x = 0) •
- 1

(f) x2 =RxO=
3

~, ----~I------

~~-----~-----------J-----:.:
~.3-----I-----....-----O..",.------t-...,-
k. ....----1------

...~-~----~... ------L--.&·
5J -.;._

Fla. 511.1-7

1\ A

.,/' "'==" ~ i;.-

Fig. 511.1-8

x(I) =acos(Ct)c' +8)

2'1a =-
3

(b) X(I)';' aCos(a1c' +8) =acos(a1cl+8) =0

(c) Rx(tl,12)'" 8
2 Cos(a1cll +8)COs(Q1cI2 +8)

=i{cosmc(11-/2)+co~mc(11 +12)+28]}

=iCOSa1c(II-12)+ 2~f:1f CO~a1c(ll -/2)+281'8

=.!.COSCt)c(ll - '2)
3

(d) The process is W.S.S.

11.1-8
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(e) The process is not ergodic. Time means ofellI:h sample function is different and is not equal to the
ensemble mean.

- t
(f) x2

.. Rx(O)=3

11.1-1 (a), (d), and (e) are valid PSDs. Others are not valid PSDs. PSD is always a real, non-negative and even
function ofQ}. Prcx:esses in (b), (c), (0, and (g) violate th~ conditions.

11.1-2

11.2-3

11.1-4

•

(a) Let x(t) .. Xl and x(t + r) = x2 Then,

222- 22(Xl±X2) =Xl +X2 +2x,x2~O, Xl +x2 ~±2xlx2

But, x,x2 = R,,(r) and Xl2 =X22 -Rx(O) Hence, Rx(O)~IRx(r~

(b) R,,(r) =x(t)x(t + r), lim Rx(r) = lim x(t)x(t+r)
f-+ClO f-+OO

As r -+ co, x(t) andx(t+r) become independent, so lim Rx(r) =x(t)x(t+r) = (i)(X) = x2

f-+ClO

R,,( r) .. 0 for r =±~ and its Fourier transformSz(Q}) is bandlimited to B Hz. Hence, Rz(1') is a
2B

wavefonn bandlimited to B Hz and according to Eq. 6.1 Ob

Rx(r) = :E RX(~)SinC (21rBr-n). Since Rx(~)= °for aUn exceptn - 0.
,,=-ao 2B 2B

Rx(1') .. R,,(O) sinc (21rBr) andSx(Q}) =R,,(O) rect('!!"'). Hence, x(t) is a white process bandlimited
. 2B 41rB

toB Hz.

Rx(to) .. PXiX2 (1, 1) + PX1"2 (-1,-1) - P"I"2 (-1, 1) - PX1X2 (1,-1)
But because of symmetry of 1 and 0,
P"lx2(1, 1)= PXIX2 (-I,-I) and PXIX2 (-I, 1)= Px1x2 (I,-I)

and Rx(r) =2(PX1X2 (I, 1) - PX1X2 (1,-1)]

=2P"1 (1)[Px21xI (111)- Px21xI (-111)]

=2Px1 (1)[P"21xl (111) -(1- P"21xl (111))J. 2P"21xl (111)-1

Consider the casen16 <I~ «n+ 1)16. In this case, there are at least"nodcs and a possibility of (n+ 1)

nodes Prob({n+ l)nodes] =r-IITb =.!..-II
lb lb

Prob(n nodes) • 1- Prob({II+1)nodes] =(II + 1) - .!..
7b

The event (x2 = llx1 =1) can cx:cur if there are N nodes and no state change at any node or state change at

only 2 nodes or state change at only 4 nodes, etc.

Hence, P"21xl(111) ... Prob({n+ l)nodes] Prob(state chanse at even nmnber ofnodes) +

PrOb(1I nodes) Prob(State changes at eveen nmnber ofnodes)

The number ofways in which changes at K nodes out ofN nodes cx:cur is (~). Hence,

Px2 1x, (Ill). [(S+IXO.6)O(O.4),,+1 +(~+I~O.6)2(O.4)"-' +.....](~ -II)+
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(n·.I)

(n=O)

(n=2)

•

[(3)(0.6)°(0.4)" +(~XO.6)2(0.4)"-2 +.....] (n+ 1- ~)

andRx(r)=2Pxllx2(*)-1 Thisyields

Rx(r)=t- 12M 1~<7b
7b

=-0.44+ 02411 7b <I~ < 27b
7b

=0.J36-0.0481:i 27b <1~<37b
16

and soon.

1·2- c:l't:..... ••2~

I
I
_ ••• '1' -0,,, f'

- /02,

.;a..'"

- • .-aI'

'te·511.2-4

The PSD can be found by differentiating Rx(r) twice. The second derivative d 2R;x / dr2 is a sequence of
impulses as shown in Fig. SI1.2-4. From the time-differentiation property,
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11.1-5

:1'
2
2 Rx(T) ++ (jtU)2 Sx(tU). -tU2Sx(tU). Hence, recalling that 6(1'- T) <:::) e-jlllT

, we have

_tU2Sx (CtI):;;: ;b [-2.4 +1.44(ellll7b +e- jlll7b ) - 028~efllll7b +e- j21l17b )+....]

- ..!..[-2.4 +2.88costU7b -0.576cos2Ct17b +0.1152 cos3Ct1Tb+····]
Tb

and

Sx(tU) =~[2.4-2JicostU7b -.!.COS2tU7b +..!..cos3tUTb __I_COS4tUTb+....)]
T"tU \. S 25 125

Because Sm(eu) is a white process bandlimited to B, Rm(T) = Rm(O) sine (2Bt) and

Rm(2~)=O, n=±I, ±2, ±3...

This shows thatx(t){t +2~)- Rm(2~)· 0

Thus, all Nyquist sample are uncorrelated. Now, from Eq. 11.29,

Sy(tU) =Ip(eut [Ro +fRmcosnCtlO7b]
Tb " .. I

Rn =a.ak+,. = 0 n ~ 1 and where a.. is the kthNyquist sample.
- -Ro .. al =x2

- Rm(O). Hence,

Sy(w) ='P~)12 Rm(O) =2BRm(O)jP(w)2! since Tb • 2~

11.1-6 For duobinary

Pat (1) =Pat (-1) - 025 and Pat (0). 0.5

- I 1{I)ak :;;:(1)-+(-1)-+ - .. 0
4 4 2

"2 ()2 I ( )2 I 2( I) IRo=ak - I -+ -1 -+0 - .-
4 4 2 2

R1 = a..a"+1 = L La.ahIPI.I.+1 (akat+l)
ak ahl

Because ai and ak+l each can take 3 values (0, I, -I), the double sum on the right-band side ofthe above
equation bas 9 terms out ofwhich only 4 are nonzero. Thus,

R) • (t)(I)PI•I.+1(1,1) +(-1)(-1)P•••k+1 (-1)(-1) +(1)(-I)P••••+1(IX-I) -(-I)(I)PI••hl (-1)(1)
Because ofduobinary rule, the neiabboring pulses must have the same polarities. Hence,

1(1) 1~,Ihl (1,1)" p•• (I)PI••11a. (~I) '"' 4' i =i

Similarly, PI•••+I(-1,-1) - i Hence, R1 == ±
Also R2 .. akak+2

In this case, we have the same four terms as before, buu. andak+2 are the pulse strengths separated by one
time slot. Hence, by duobinary rule,

1(1) Ip.....2 (1,1) == p•• (I)P.h211. (III) .. 4' 4' - 16

Similarly, PI•••+2 (-1,-1) - 1
1
6
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In a similar way, we can show that p•••••2 (1,-1) ... P'.'••2(-1,1) ... 1~
Hence,R2 -0
Using a similar procedure, we can show that R" ... 0 for n ~ 2. Thus, from Eq. (11.29) and noting that R" is

an even fimc:tionorn,we_iD Sy(",).I~(G(I+<OS",1j,)].I~to.2( "':-)

For half-width rectangular pulse p(tv) ...t Sinc (0): )andSy(tv) ... ~ SinC2( (1)1 )cos
2CI1

: )

11.2-7 ai =(I)Q+(-I)(I-Q)=2Q-I

Ro'" ai _(1)2Q+(_1)2(I_Q)= I
Because all digits are independent,

Rn ... a.ahl • ikik+1 == (2Q_I)2 Hence,

Sy(Cl1)'" Ip(Cl1)1
2

[1 +2(2Q-l)2(fcosnCl17b)il
7b net J

-L-

-M E'jlIro"..-n
.... w;;.._4-L..-"'--_~""_.a--~......_

Approximate impulses by rectangular pulses each ofheight h and width &such thath& ... 1and &-.0
(Fig. S11.2-8a)

Rx(r) ... rr%t.l'2PXIX2 (%1%2)
xI %2

Since xI and x2 can take only two values hand 0, there will only be 4 tenns in the summation, out of which
only one is nonzero (corresponding lOxl ... h, x2'" h). Hence,

Rx(r) ... h2PX\X2 (h,h)'" h2PX\(h)PX2 IxI (hjh)
Since there are a pulses/second, pulses occupYa& fraction oftime. Hence,

PX1 (h) ... a& and Rx(r) ... h2a&PX21xI (hjh) ... ahPx2 1xI (hjh).

Now, consider the rangel~ < &. Px2 1xI (hjh) is the

Prob(X2)'" h, given that xI ... h. This means XI lies on one
of the impulses. Mark off an interval ofr from the edge of
this impulse (see fig. SI1.2-8b). If Xl lies in the hatched
interval, X2 falls on the same pulse.
Hence,

11.2-8

PX21x (h\h) ... Prob(XI lie in the hatched reaion) ... !:.!. == 1-!.
I G &

and Rx(r) ... an(I-;)
Since Rx(r) is an even function of r, Rx(r) ... a{I_I;)
In the limit as &-+ 0, Rx ( r) becomes an impulse ofstrength a.

Rx (r)=a4(r) I~"'O.

When r > G, XI and x2 become independent. Hence,

Px2 1xI (hjh) ... PX2 (h) =a&

Rx(r)=a2h&=a2 I~>O

Hence, Rx(r) .. @(r)+a2 Fig. 511.2-8
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11.2-9 In this case the autoe:OlTelation function at r = 0 remain same as in Prob 11.2-8. But for r > 0 whenever

x(t), x(t + r) are both nonzero, the product x(t)x(t + r) is equally likely to be h2 and - h2
• Hence,

Rx(r)-O, r9l0andRx(r)=a6(r)

11.2-10 The process in this problem represents the model for the thermal noise in conductors. A typical sample
fUnction ofthis process is shown in Fig. SII.2-10. The signalx(t) changes abruptly in amplitude at random

instants. The average number ofchanges or shifts in amplitudes are{Jper second, and the number of
changes are Poisson-distributed. The amplitude after a shift is independent ofthe amplitude prior to the
shift. The fU'St-order probability density ofthe process is p(%; t). It can be shown that this process is

stationary oforder 2. Hence, p(%; t) can be expressed as p(%). We have

Rx( r). J:J':%1%2PxtZ2 (%It%2}taldr2

... J:J:%1%2Px\ (%1)PX2 (%2/%1 .. %1)dcldr2 (1)

To calculate PX2 (%2IXI = %1)' we observe that in r seconds (interval between XI and x2)' there are two

mutually exclusive possibilities; either there may be no amplitude shift(X2 =XI), or there may be an

amplitude shift(X2 9l XI)' We can therefore express PX2 (%2/XI =%1) as

PX2 (%2/XI = %1)'" PX2 (X2IXI = XI. no amplitude shift)p(no amplitude shift) +

PX2 (x2lxI = XI, amplitude shift)P(amplitude shift)

t

Fla. 511.2-10

The number ofamplitude shifts are given to have Poisson distribution. The probability of" shifts
in r seconds is given by

pier) - (P:t e-ftr

where there are on the average {J shifts per second. The probability ofno shifts is obviously Po(r) , where

po(r)_e-ftr

The probability ofamplitude shift-I- po(r) =l_e-ftr . Hence

PX2(X21xl =xI)=e-ftrpX2(X2!XI =xI, no amplitude shift) +(l-e-ftr )PX2(X2/XI =xl' amplitude shift)

(2)

when there is no shift, x2 = XI and the probability density ofx2 is concentrated at the single value Xl'

This is obviously an impulse located at x2 = XI' Thus,

PX2(X2IxI =xl' no amplitude shift) =4(X2 -Xl) (3)

whenever there are one or more shifts involved, in general, x2 ¢ xI' Moreover, we are given that the
amplitudes before and after a shift are independent. Hence,

PX2 (x2lxI I: XI, amplitude shift) = PX2 (X2) =p(x) (4)
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where PX2 (X2) is the flJ'St-order probability density ofthe process. This is obviously p(x). Substituting
Eqs. (3) and (4) in Eq. (2), we get

PX2 (x2lxl = Xl). e-pr0(X2 -XI)+(1-e-Pr )PX2(X2)

ae-pr{0(X2 -Xl)+(ePr -1)Px2(X2)]

Substituting this equation in Eq. (1), we get

Rx('r) =e-Pr I:I:XIX2PX\ (XI)[8(X2 _XI)+(epr -1)PX2(X2)}irldr2

.. e-pr[J:I:xlx1PX\ (XI)6(X2 -Xl)drldr2 +I:I:XIX2(eP
r -l)px\ (Xl)PX2 (X2)drldr2]

== e-pr[J: x?PXI (Xl)drl +(ePr -l)CXIPx\ (Xl)drlJ:X2PX2 (X2)dr2]

=e-pr[x2 +(epr -1)X2]

where xand x2 are the mean and the mean-square value ofthe process. For a thermal noise x=0 and
Eq. (5) becomes

Rx(r) === x2e-pr r > 0

Since autocorrelation is an even function ofr, we have

Rx(r)=x2e-~rl

and

11.3-1 For any real numbero, (Q- y)2 ~ 0

0 2x2 +y2 - 20xy ~ 0
Therefore the discriminant ofthe quadratic in 0 must be non-positive..Hence.

2 - - 2--
(2XY) <4x2 .y2 or (iY) <x2 y2

Now, identify xwith X(tl) and y with y(t2) , and the result follows.

11.3-2 Ru(r) =u(t)u(t +r). [x(t) +y(t)Ix(t +r)+y(t +r)]

.. Rx(r)+ Ry(r) +Rxy(r) +Ryx(r). Rx(r) +Ry(r)

since x(t) and y(t) are independent.
::------=~-----::

Rv{r) =[2x(t) +3y(t)I2x(t +r)+3y(t +r)]

II 4Rx(r)+ 9Ry(r) since Rxy(r) = Ryx{r) =0

Ruv (r) ... [x(t) +y(t)I2x(t +r)+ 3y(t +r)] =2Rx(r)+ 3Ry( r)

Ruv (r) === Ruv (-r) =2Rx(r) +3Ry ( r)

11.3-3 Rxy( r) = ABcos(mot +;)CO~nt»o{t +r) +n;]

=~B {CO~Mot +nMo{t +r)+(n+ l);]+co~nMo(t +r)-Mot +(n-l);])
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CO~0101 +n010(1 + r)+(n+ 1);]=_I (211' ......J'01O'+ n010(1 + r)+(n+ I);]d; =0
2"~ ~ . .

Similarly,co~naJo(1 + r) -t»ol+(n-l);] =0 and Rxy(r) ... 0

11.3-4
CD

X(I) =Co + 1:C"cOSn01o(l-b)+O"
,,=1

CD

• Co + LC,,(nt»ol- naJob+8,,)
nal

Since b is a r.v. unifonnly distributed in the range (0, Tb), O1ob =2nb is a r.v. uniformly distributed in the
16

range (0, 2").
Using the argument in problem 11.3-3, we observe that all harmonics are incoherent. Hence the
autocorrelation function ofRx(1') is the sum of autocorrelation function ofeach term. Hence follows the
result.

J1.4-1 (a) S)(t») =2KTR1 and S2(t») =2KTR2
Since the two sources are incoherent, the principle of superposition applies to the PSD.
IfSOJ (t») and SD2 (t») are the PSD's at the outputterminals due toSl(01) and S2(t») respectively, then

SOJ (t») =IH1(01t Sl(t») and S02(01) =IH2(aJ)1
2

S2(t»)
where

c vo c

(c)

Fil·S11.4-1

(b)(a)

Similarly,

H2(aJ)'" R1 • R
R2(jt»R)C+I)+Rl jt»R1R2C+R) +R2

S (t»)= 2KTR1RI and S (0»- 2KTR2Rf
OJ 0)2RlRlc2+(R1+R2)2 D2 O12RlR1C2 +(R1+R2)2

2KTR1R2{R) + R2)
Svo(m)=SOJ(m)+SD2(m)= 2 2 2 2 2

0) R1 R2 C +(R1+ R2)

(b) H(m)= l/jc£ = R)+R2
_1_+ RIR2 jtJ£R1R2 +(R) +R2)
jt:lC R) + R2

Svo =IH(01)2/
2

KTR1R2
R)+R2

(R1+R2)2 2KTR1R2 2KTR)R2(R1+R2)

= 0)2c2RlRI+(R)+R2)2' R1+R2 =m2Rl~?C2+(RI+R2)2
which is the same as that found in part (a).
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11.4-1 y(t) ...I: h(a)x(t - a)da
--------

Rxy (:-) =x(t)y(t + :-) ... x(t).r: h(a)x(t + :- - a)t.ia

...I: h(a)x(t)x(t + t -a)ia ...I: h(a)Rx(:-- a)da =h(f). Rx(f) and Sxy (ClI) =H(a»Sx{ClI)

I

In Fig. 11.13, H(ClI)- j~ =. I
R+- )DJRC+I

jr£

andSlIVo (td) =2KTR l(jtdRC + l)andRnv
o

(:-) ... 2KTR e"rlRCue1')

<,

11.4-3 (a) We have found Rx(:-) of impulse noise in Prob. 11.2-8

Rx(T) =ac5(:-) +a 2,and Sx(m),.. a +2mz2c5(CI»
Hence,

Sy(a» -IH(mt[a+2Ira2c5(CI») ... 2lra2lH(ot3(CI»+a/H(tdt

and Ry(:-) =~-l[Sy(m)],.. a2IH(O~2 +ah(:-).h(-:-)

(b) h(t) =i.e-tlr.,(t). H(CI» =i.--.1.-.
I' T. I)CI>+-

:-

IH(a>t = q2 I and Rx(t) =a2q2 +(fl-l[ q2 ]_ a2q2+ aq2 'e-Wr
I+CI>2 t 2 I+CI>2:-2 2f

xU) H(w)
her)

Fl•. Stt.4-3

y(1)

l_

11.5-t n(t) == "c(t)COSCI>ct +ns(t)sina>ct

The PSD of"c(t) and,,(t) are identical. They are shown in Fig. S11.5·1. Also, oJ is the area under ','

Sn(td) •and is given by n2 _ 2[..Al x 104 + 10
4
(~.!)]=1.25 x 104 ..Al

2· 2 2 2

-(-) -- [ ..All ]n~ or n~ is the area underSnc (tV). and is given by n~ =n~ • 2 50Q0..,\J +2"' '2 x 5000 =1.25 x 10
4

..Al

-.5"
Fig. SIl.5-t
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11.5-2 We follow a procedure similar to that of the solution of Prob.
11.5-1 except that the center frequencies are different. For the

3 center ftequencies Srte (l1)~or S... (l1) ] are shown in Fig.

S11.5-2. In all the three cases. the area under SIIc (0.1) is the

same, viz., 1.25)( 104~. Thus in all 3 cases

n~ = n~ = 1.25)( 104~

-'0 K 5k lo~

f I'f~ ..

(~V\t,r f ...~· /0E k.

-,0te. IS K 'tJ~ .",Jte.

fHa*
~.n1er .,~. q5 It.

Fll·511.5-2

Fit. Sl1.5-3

6

()
Sm(w) ?:;r _ 6 1

11.5-4 (8) Hop W = () () = 6 - 2 = 2
Sm OJ +Sn OJ --+6 641 +60 0.1 +10

9+ 0.1
2

(b) h (I) =::--b.e-JiO~1
Of' 2,,10

(c) The time constant is~. Hence, a reasonable value oftime-delay required to make this filter
,,10

realizable is~ :: 0.949 sec.
,,10

(d) Noise power at the output of the filter is

N 1 r Sm(OJ)Sn(O.I) '" _ 1 r. 6 d 6 tan-I OJ lao _ 3
0= 21r -GO Sm(OJ) +Sn(O.I) tv - 21r -GO l1)2 +10 tv:: 21rJiO 1iO -«l - JiO

The signal power at the output and the input are identical

1 lao 6SI :: So s - 2 dOJ "" 1
21r -«l9 + l1)

SNR:: .& =J10 "" 1.054
No 3

93



4

11 5 5 () H ( ) Sm(t») ;r:;4
• - • op t» ... Sm(t»)+Sn(t») ... _4_+ 32

'oJ2 +4 t»2. +64

t»2 +64 1[I 53.33]
... 9t»2 +96 ... 9' + t»2 +10.67

(b) "'(/)'" i6(/)+ 8.l63e-3.266jt1

(e) The time constant ofthe filter is 0.306 sec.
A reasonable value oftime-delay required to make this fiher realizable is 3x 0306 ... 0.918 sec.

(d) Noise power at the output of the filter is

No'" _Ir. Sm(t»)Sn(t») dt» = _I100 32 dt» ... 0.544
211' -Sm(t»)+Sn(t») 211' -~t»2+IO.67)

The signal power is

1 100 4S; =So"'- ~t»=1
211' -4+t»

Sn I
-.ll.. =--=1.838
No 0.544
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Chapter 12

5 5·
11.1-1 .::;- =r =JJ~'

o

5·
r = 1000 = .' ~ 5/ .. 0.08

2 x 10- x4000

Also, Hc(Q») =10-3• Hence. 5r = 5; 2 = 8 x 10"
IHc(Q»)!

5r .. _1,8[2 x 800011''1 = 8x 104 ~ .8 ... 10
211'

12.1-2 r----ld lW)

-H+w.
Fia. 512.1-2

5no (IV) =5n(Q»)IHd(IVt .. 10-10( Q)2a~a2) a" 8000tr

No""!"r 1O-10(1V2
+a

2t lV =10-
10 (Q)3 +a21V)a .. 32 x 10-7

tr 0 a2 r a2tr 3 0 3

35dB=3162=~= 50 =>50 ... 3.37 x l0-3
No 32 x 10-7

3
10-3

But 50 (/)" -m(t}. Hence,
a

10-6 -- -
50 =-2m2(t} .. 3.37 x 10-3 => m2(/)'" 215.7 x 109

a

Also, m2 .. _1 lao fJdtl1 .. pa .. 8000.8 ... 215.7 x 109
2tr -GO tr

Hence, .8'" 26.96 x 106and5m(Q») = 26.96 x 106rec:{~)

1ta \l \12 1 ra 6( 10
6

}5/ =- Sm(Q)J1Hc(Q)/1 dOJ"- JIO 26.96 x 10 2 2 tI1
tr tr OJ +a

.~tan-l~la.~ .. 2.68xI0-4
atr a 0 4a

Sr .. .!.. ra 8m(tI1)dQ) ... ..!.. ra 26.96 x 106dOJ'" 26.96 x 10
6
a = 68.65 x 109

tr JO Ie Jo Ie

12.2-1 S 5/ 5· -4Ca) 30 dB= 1000 .. ..:::2.. ... r =-= ' =>5; ... 4 x10
No JJB 10-10 x 4000

(b) From Eq. (12.7), No ..~B .. 10-1°(4000) '" 4 x10-7

(e) 5; .. IHc(Q)t Sr and 1O-85r .. 4 x 10-4 => 5r =4 x 104
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11.2-1 (a) So =1000 = S; = S; ~ S =4 x 10-4
No ~ 10-10 x 4000 I

(b) No =JJB = 10-10 x 8000 =4 x 10-7

(e) S; =IHc(mtST = 10-8ST = 4 x 10-4 ~ ST =4 x 104

11.1-3 Let the signals ml(t) and m2(1) be transmitted over the same band by carriers ofthe same

ftequency (t»c), but in phase quadrature. The two transmitted signals are J2[ml (I) cost»cl + m2(I) sin 11Icl ]

Milot: ) ....V\.,Ct)
L.PF~9---

~"'l.PF

FII. 512.1-3

The bandpass noise over the channel is nc(l)cOSl1lcl + ns(l) sin l1Icl. Hence, the received signal is

[Jim) (I) + nc(I)]cosmcl +[Jim2(I) + ns(I)]sinl1lcl

Eliminating the high frequency tenns, we get the output of the upper lowpass filter as mJ(I)+ *nc(l)

Similarly, the output of the lower demodulator is m2 (I) +"* ns(t)

These are similar to the outputs obtained for DSB-SC on page 535. Hence, we have~ =r for both QAM
No

channels.

11.1-4 :fm(t}]min !!!.e..
(a) p= A ... A Hence, mp • pA

m2
S I·

(e) For tone moduiatioDK2 = // =2 andforp=I, .:::L=-r=L
"'p 2 No 2+1 3
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12.1-5
S ,i

(a> From frob. 12.2-4, .::2..... 2 2 ,.
No K +p

and whenp >= I, !L ... .J.-, ... L
No 9+1 10

S (05)2
(b) When p =05, .:.JL = , • L

No 9+(05)2 36

11.1-6 For tone modulation, letm(t) pAcoso>",t. For BSB-SC,

; DSB(t) /ipAcosOJ",t ·eosOJet

... ,*[eos(OJe+ 4I",)t +cos(me - 4I",)tJ

S. =,i ..4
2

+ p2..4
2

... p2..4
2

and m ...~+~ ... C:2 ,,-A
, 4 4 2 p ~2 ~2 'VJ.~ Hence, the peak power

Sp=(J2pA)2=2p2..42and~"'r.~= Sp WhereSj=.!.Sp
No ..AlB 4..AIB 4

ForSSB-SC

'sss(t) =m(t}cosO>et +m,,(I}sinO>et

::;.UA eosm",t cosOJe' +.uA sin m",t sin OJet = pA cOs(OJe - OJ",)I
2 A2 S S 2,,42 S

Sj = -p-- and mp = pA. Hence, Sp = p2 A2 and .:.JL ... r =-j=!!.-=-L
2 No ..AlB 2""'B 2JJB

For AM
, AM(I) ... A(I +p cosm",t)eosOJet

..42 m2 A2 p2 A2
5-=-+-=-+-, 2 2 2 2

mp '" ,,4(1+ p)and Sp'" ,,42(I+p)2.
Hence,

Sp(2+p2) So ~ p2 A2/2 Sj (p2 i Sp{2+ p2 )]

S;= 4(1+p)2 and No >= A2+;:i'= ,,42+(p2,,42/2)'JJB "'\2+p2~4(I+P)2..AIB

Under best condition, ie., for p ... I, !R.. ... .!..e...-
No I(UJB

Hence, for a given peak power (livenSp) DSB-SC has 6dB superiority, and SSB-SC has 9dB superiority

over AM. These results are derived for tone modulation and for p = 1(the case most favorable for AM).

11.1-7 For 40' loading, mp >= 40'", and the camer amplitude A ... mp =40'm (for p =1). For Gaussian m(t),

m2 ;; O'~ (assuminl iii .. 0 )

Prob(E ~ A) = Ii En2e-En212~dElI = e-A2/2trn2 ::; 0.01
A O'n

.04 2 0'2 ,,42 +m2 160'2 +~ 17
Hence, ~=8 ~ -4.60Sand Sj'" = m m =_.O'~

20'n O'n 2 2 2

S 17 0'2 17(40'2) 17Therefore, rThresh =-; ...-.~=- ~ =-(4.60S)=9.79dB
..AlB 2~ 8..AIB 8
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12.3-1
S

-.!L = 28dB = 631. Hence,
No

631 x9
Therefore, y =- =473.25

12

(a) Also,y =~=:>Si=yvfB =473.2Sx2 x 10-10 x 15000 =1.4197 x 10-3
vfJB

~W kfm kf (3um)
(b) p ... - =--p => 2 = => kfUm =20,OOOn

21tB 2trB 30,ooon
-- 2

So =a2k}m2(t)=a2k}a~ =(10-4) (20,ooon)2 ... 4n2

S
(c) No = -.!L =0.0199

631

...

12.3-2 mp = B,

12.3-3 m(t) = cos3 CtJot and mp =1

m(t) =-3CtJ 0 C052 CtJouin CtJot and m(t) = -3CtJo[CtJo C052 CtJ oteosCtJot - 2CtJ 0 cosCtJot sin2 CtJot]

For a maximum

m{t) =O. This yieldsc052wot =2sin2 CtJot

1 ·2 2.2 . 1 [2
or -SID CtJot= SID CtJot=>SIDCtJot='Jj' COSCtJot=V3

11.3-4 m(t) =al coswlt + a2 c05w2t, mp = at +a2

m(t) =-(atCtJ \ sinCtJtt +a2CtJ2 sinw2t), mj, =at CtJ\ +a2CtJ2

(So/No)m (21d1)2 m; w~(at +a2)2
= 2" 2

(So/No)FM 3mj, 3(atWt+a2CtJ2)

= 2

3w~ai(1+~)
a2CtJ2
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12.3-5 Error in this problem. There should be 41r2 in the denominator (see below).

Sm(w) =W2Sm(M). Hence,

I:[m(t)t tit ...1:Sria(2/f)cV'"1:41r212Sm(2tt/)cV
From Eq. (12.42a)

. .
}_",:!,-_(_t.

12.3-6

12.3-7

ro f2 cV 3IGO .x2

- J....., I +(fll. )2k 10 ---ri dx
S 2 0 -«I1+x

m= =ro 1 dl f.lGO
_I_dx

J....., I + (II10)2k 0 -«I] + x2k

1.
2

[ Ir J
c • 2hm(*) -/.' sm(~)

tr 0 • (31r)
2ksin(2:) sm 2k

The definite integrals are found from integral tables.

k
-2 2 sin(Ir/2k) 2 (1r/2k) ] 2

As -+ <Xl B =I. -+ I. =-1.
'm 0 sin(31r/2k) 0 (3tr/2k) 3 0

S (M) - ~e-oh2u2 m2 - 2 roo~-(lh2U2 dM 2
m - 2 ,- Jo 2 =

0' 0'

Hence, the normalized PSD's is..f1.e-1II2/2a2
20'2

- - 3 2 ,
If W = 21CB, then W2 =(21CB)2 = 2 ro~-c» 12rrd(j) = 20'2. Ifp(W) is the power within the

Jo 20'
band-W to W.

p(W) = 2 (W ..!!!.::-e-0,2,2(12 dw = 2[1- e-W2/2~ ],
Jo 20'2

P(W) W 2/2 2
p(co)-2,and p(co) =l-e- (I .0.99~W=3.030', B=0.4820'

~:? =0.95 => W =2.450', B =03950'

~:? =0.9 =W=2.150', B =03420'

W2 -
x =0.99 3 =3.060'2 > W2 => PM superior
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% =0.95

%=0.9

w2 -
- = 2.000'2 = W2 ::> PM and FM equal

3
W2 -
- • 1.540'2 < W2 ::> FM superior

3

12.3-8

11.3-9
So 2 m2 1 2 - 1 1 2

(a) -=3P Y-==-P y. Sincemp =30', m2 .0'2 and23.4dB-218.8, 218.8=-3P2Y=-3(2) y
N m2 3o p

218.8 x 3 .
y = 4 =164.1. Also, Y'l1ucsh ... 20(P+ 1)

So PThrcsh • 164.1 -1 == 721
20

~ =1. p2y =1.(721)2(164.l} =2844 = 34.53 dB (40 dB = 10,000)
No 3 3

So 12 1(Y17l-20)2 212)(10
7

(b) - =-p y =- Y17l =10,000 or(Y17l-20) = ::> y;; 242.5
No 3 3 20 Y17l

Required increase in y = 242.5 = 1.479 =1.7 dB
164

12.3-10 From Eq. (12.40) p2 ... .!.[ . C~I )]
3 1+ m2 m2

p

(l) Tone modulation /p =.!.(-1.....) ::> p=0.47
3 1+0.5

(2) Gaussian with 30' - loading p2 =.!.(--!..-) ::> p ... 0.547
3 1+ 1/9

(3) Gaussian with 40' - loading p2 ... .!.(-!-)::>P.. 0.56
3 1+ 1/16

m2
where For tone modulation, - ... 0.5

m2
p.

2 2
For Gaussian modulation with 30' - loading, m2 =-!!:-;: = 1. .

mp (30') 9
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F G . od I' 'th 4 I d' m
2

a
2

1or aUSSlan m u atlon WI a - oa mg, 2 = --2=-6
mp (4a) I

12.3-11 Let us first analyze the L+R channel. In this case, the demodulator output signal, when passed through the

, " 20-15 kHz (Iowpass) filter, is given by(L + R)' + no (I), whereSn (OJ) ="OJ2 [see Eq. (12.33)].
o A

When this signal is passed through the de-emphasis filter Hd(QJ) = OJI ,the signal is restored to (L+R)
}OJ+tVl

and the output noise power N~ is given by

1 rWI 12 ..AI rW tV1tV
2

..AIQJt [ -1 w]N~ =: - Jo Hd(OJ) Stlo (01)dQJ =: -2Jo 2 2dtV = 2 W -OJI tan -
If 1r.'f QJ + tV I 1rIf QJ1

Let us now consider the (L-R) channel.
LetQJ, =: 2". x 38,000 andQJI =2". x21oo.
The received signal is FM demodulated (Fig. 5.19c). The PSD ofthe noise at the output of the FM

demodulator isSno (tV):: ..AItV2 / A 2 [see Eq. (12.33)] The output ofthe FM demodulator is separated

into (L + R)' over 0-15 kHz and (L - R)' cosQJ,t over the band 38± 1Sor 23 kHz to S3 kHz, Let US consider

the signal over this passband, where the noise can be expressed as nc(/)coSOJ,t + ns(t)sinQJct. The signal

is (L - R)' cos01,'. Hence, the received signal is[(L - R)' + nc:(t)]cOSQJc + ns(t)sinQJct. This signal is

multiplied by2cos01c' and then 10wpass-fIltered to yield the output(L - R)' + nc(t). But

Sflc (01) =Sn(01+OJc)+Sn(01-QJ,) =~ [(01+01,)2 +(01_QJc)2]

When this signal is passed through de-emphasis filter Hd(01) = ,4)1 ,the signal is restored to (L-R) and
jOJ+4)1

the output noise power N:; is given by

" 1 rWI 1
2 ~ (W[ 2 2J QJfNo=-Jo Hd(01) Sn (OJ)d4)=-2Jo (QJ+QJc) +(01-QJ,) 2 2 dQJ

". ; 1r.'f QJ + 011

'"' 2..A101r [w + tV~ - tVr tan -1~] W = 2". x 15,000
m42 QJI QJI

Hence, the (L-R) channel is noisier than (L+R) channel by fKtor!jf liven by
o

2(W+ OJ: +QJt tan-I.!!-) 2(B+ f,2 + /1
2

tan-I..!)
N" 4)1 101 Ii /1

N~ = w -I( W ) ""' B '- -I( B)-QJI tan ;; - Jl tan /1

Substituting B'"' 15,000, /, =: 38.000, /1 =2100 in this equation yields:

N"
~ =166.16 = 222 dB.
N~
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12.4-1 L =M n => n =logM L

!.£. = 3L2 m
2
(t)

N m2
o p

-3M"(=':)
~= 55dB= 316200
No

For uniform distribution
- 1
m2 =-I"'Pm2dm

2m -mp P

1
=-m3 p

(a) 316200 =3{2),.(=.:)
=3(2)2n(i)=22n

2n =18.27
Since n must be an integer, choose n = 10 and L= 1024

(b) ~ =3(2)20 1. =1.048576)( 106 ~ 60.17 dB.
No 3

BPCM =2nB = 90 MHz (assuming bipolar signaling)
(c) To increase the SNR by 6 dB, increase n by1, that is n =11.
22 x 4.5 = 99 MHz.

o

Fig. 512.4-1

Then the new bandwidth of transmission is

12.4-3 Sj =2BnEp , Ep =2)( 10-5, B =4000, n - 8

Sj =2 )( 4000)( 8 )( 2 x 10-5 = 128

r =..§.L = 128 = 2.56)( 102
..)JB 2)(625)(10-7 )(4000

~f;)·Q.m = 7.569 )( 10-
9

Bm =nB =8)( 8000 =64 kHz (assuming bipolar line code)

S 3(2)2n ( m2
}

(a) "ff.;= 1+4(22n-1)~f;) ;;;

where rr =~2Ep,. 2x2xl0-
5

_J2S6 =.J32
V; ..)J 2 x62Sx 10-7 8

S 3(2)16 (1)
So, it;=1+4(216 -1)Q(J32) 9' =21845= 43.4 dB.

(b) Ifpower is reduced by 10 dB, theny =25.6, Q(J3.2) =Q(1.79) =0.0367 and

~= 3(2)16 (1.)=227 =3.56 dB.
No 1+4(216 -1)Q(m) 9
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12.4-4

11.4-5

The table below gives SNR for various values ofn under the reduced power.

(d) r---~~:----r--:--~---r--r--"""""--r-~-'"

Hence, n'" 3yields the optimum SNR. The bandwidth in this case is Bm ... 3)( 8000 =24 kHz.

1- PE =P (correct detection over all K links) + smaller order tenns

== (1- p,)K-I(I_ p~) == [I-(K -1)p,II- p~] == 1- P~ -(K - I)P,

So PE =P~+(K-l)~

(b) r =25 dB= 316.2, r =23 dB= 199.5

P, = Q(~316.2/8) = Q(6.287) =1.6)( 10-10

p~. Q(~199.s/8) =Q(4.994) = 3)( 10-7

PE .. 99)( 1.6)( 10-10 +3)( 10-7 =3.16)( 10-7 =P~

As noted on Pg. (570), the optimum tilters for OSB·SC and SSB·SC can be obtained from Eqs. (12.83a)

and (l2.83b), provided we SUbstitute'i[Sm(t» + Q),,) +Sm(m - m,,)] for S.(Q1} in these equations. Let

Sm(m) ... 'irSm(Q) +Q)t:)+Sm(m- Q)t:)]

.~(.,+.,:;, +a'+(.,-.,:;,+a']
a 2(Q)2 +m~ +a2) a-30G0",

= 2
(m2+Q)~ +a2 ) -4t»2m~ "c..2",xloS

We shall also require the power ofSm(t»).

J =_I roo Sm(t»):it»
2n- J-oo

We can simplify the evaluation ofthis integral by recognizing that the power ofthe modulated signal
m(t)cost»"t is half the power ofm(t). Hence,

I I Joo I tao a
2

a -I t»lao aJ =-- Sm(t»):it» • - dQ) =-tan - =-
2 2n- -00 2n- Q)2 + a2 211' a 0 4

We shall use the POE system shown in Fig. 12.19
103
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(a) For this system

IHp(t»t =__S~TL-S,n(t»~)=/S=m...(t»...) =---

I (\Ir«' Sm(t»)Sn(t») df
He t»IlJ_ IHe(t»)I.

Because Hc(t») and Sn(t») are constants, we have

I ( \/2 STJ"""I/S"-m(-m) _ 103/~
Hp m'l '"' ~ - 1 rt.I"::\J:"/Sm(t»)df ;if:"Sm(m)dflJ

wbereSm(w) is found in Eq. (1). AI50from Eq. (l2.83b)

\/2 G2 J: JSm(m)df 10
4$; JSm(OJ)dOJ

IHd(m" =- =-
ST Ji/Sm(m) 1034JSm(m)

(b) The output signal is Gm(t) . Hence, So'"' a2m2(t)
We have already found the powerofm(t) to be2(a/4) '"' 2. Hence

a2a (10-2)2(3ooo/r) 3/r
So =2= 2 =20

To fmd the output noise power No, we observe that the noise signal with PSD Sn(OJ) =2 x 10-9passes

throu&h the de-emphasis filter Hd(OJ) in Eq. (4) above. Hence, Sn(t») the noise PSD at the output of

Hd(m) is

A 2 2xlO-16J: JSm(m)dm
Sn(t») =Sn(m)IHd(m~ = ;1_

/r ,JSm(m)

(3)

(4)

2 - - 1
Also, the output noise power is n(;(t)/Ii and No =1- [see Eq. (12.~~)J, where n~ '" n2

"';f: Sn(OJ)dOJ

and £. = 3tr/20 • 3tr
2

N. ;.r 5.(c»)dOJ lOr5.(OJ)dOJ

12.S.2 Similar to Prob. 12.5-1

12.S.3
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Chapter 13

13.1-1

outf'-t t elf'
eutpllt of''*'''t.

~Lt:)
~n~l4t

f' l-t:~ ~ 1'; It"r ft\ 4IItt.hfd
A ~Tp

0 ofWt ~LJ) ATb tc pit:)
~I+U

-t..;.
Tb -t:. .... 1b "t-

(p.) C,b)
tc! )

Fig. S13.1·1

For the integrate and dwnp filter (1&0), the output is the integral ofp(t). Hence, att =16, Po(16) =ATb

If we apply 6(t) at the input of this filter, the output h(t) =u(t) - u(t -7j,) _
Hence,

and

and

p2 =p;(Tb) = A
2
Tl =2. E

n;(t) cA/li,/2 <A p

This is exactly the value ofp2 for the matched filter.

13.1-2 The output Po(t) of this R-e filter is

po(t)=A(I-e-t/ RC) O~t~7j,

• A(1_e-~/RC~-{t-n)/RC t> 7b.

The maximwn value ofPo(t) is Ap , which occurs atTb:

Ap • Po(16) =A(I_e-~/RC)

2 1..AI .("0 dO)..AI
0'n =2". ."2J-co I +0)2 R2C2 = 4iiC

and

lOS

~lt:)

~..~
- ..--. ---- ....

t



We now maximize p2 with respect to RC. lettingX':: 7bIRC, we ha~e

2 4.A216 (1_e-;r)2
p=_.

~ X'
and

This gives

and

X' == 1.26

Hence,

Observe that for the matched filter,

or

or

2
p~ = (0.816) 2.A 1j,

~

1 1.26
-=-
RC 7b

13.2-1

.. 2 2Ep 2A2r"
Pmax ""-::

~ ~

2 2 !7b[P() ()]2 Ep +Eq -2Epq
Pmax =- 0 t -q t dt = I

~ ~2

The energy ofp(t) is 1j, times the pow~r ofp(t) .
Hence,

Similarly,

Hence,

and

13.2-2 Let CI be the cost oferror when I is transmitted, and Co be the cost oferror when 0 is transmitted. Let the

optimum threshold beao in Fig. SI3.2-2. Then:

q ::QoP(E1m-l)-QoQ( .Ap~ao)

Co:: COl P (Elm:: 0) =COl Q ( .Apt:r:ao )
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The average cost ofan error is
(1)

For optimum threshold dC/doo=O. Hence, to computedC/doo,we
observe that

and

Hence,

P~
po "r 4 c Ap Y"-"

Fig. 513.2-2

Hence,

and

But

Hence.

13.2-3 We follow the procedure in the solution ofProb. 13.2-2. The only difference is Pm(l) and Pm (0) are not
0.5. Hence,

C· Pm(l) q +Pm (0) Co =Pm(l) qo Q ( APu~QO )+ Pm(O) COl Q ( Apu:a
o

)

and

Hence,
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13.5-1

But

2 JJEp
0'" =-- andAp = Ep2

Hence,

-sr
Fia. SI3.5-1

2 .)JEp
tf,,=--

2

The thresholds are ± Ep /2 and

p(elmo)=2~ E;;}2~~)

p(e~d =p(el",-I)-~ E;;2)=~J:~)
p. -iH~)+~~)+~~)]

=1~~)
13.5-2 Here, p(I) and q(I) arc identified with 3p(I) andp(I), respe~vely. Hence,

H((1) =[3 pC-Q)) - pC-(1))e-jeur" ~ 2pC-Q))e:' jc»r"

and
11(/) =2P(7b -I)

aD =-}[E3P -Ep ]=-}[9Ep - Ep ]=4Ep

But multiplication ofIs(I) by a constant does not affect the performance. Hence we shall choose h(1) to be

p(16 -I) rather than 2P(16 -I). This will also halve the threshold to aD =2Ep. This is shown in Fig.
813.5-2. Also, .

Epq =I; [3P(/)]P(t)dt =3Ep
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and

9E +E
The energylbit is Eb "" P2 p "" 5Ep Hence,

13.5-3 For M =2, c.AI =2 x 10-8

For 256,000 bps the baseband transmission requires a minimum bandwidth 128 kHz. But amplitude
modulation doubles the bandwidth.
Hence

ST =256kHz

10-
7 =~J2~b )~ Eb =2.7 x 10-7

5 j =Eb~ =2.7 x 10-7 x 256,000 "" 0.069W

For M =16

This yields Eb "" 5.43 x 10-6

5; =EbRb =5.43 x 10-6 x 256,000 "" 1.39W

For M=32

B =256,000 "" 512 kHz
T 10&2 32

-7 2(31)~~OE)P,M =~ 10&2 32"" Sx 10 =-- ---!..
32 1023c.A1

This yields Eb "" 1.719 x 10-5

5j "" Eb~ =1.719 x 10-5 x 256,000. 4.4W

13.5-4 For M =2 andc.Al- 2 x 10-8

This case is identical to MASK for M =2

10-
7 =~J2~b )~ Eb =2.7)( 10-

7

51 =EbRb =2.7 x 10-7 )( 256,000 =0.069W

BT =256,000 )( 2 =256 kHz
2
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For M:: 16

P~M • (1012 16)J), • 4J}, :: 4)( 10-7

4)( 10-7 == 2J 21r
2

)( 4Eb ) ~ Eb :: 1.67)( 10-6
~l 25~

S; =EbRb :: 1.67)( 10-6 )( 256,000 =0.427SW

In MPSK, the minimum bandwidth is equal to the number ofM-ary pulses/second.
Hence,

B =: 256,000 :: 64 kHz
T 1012 16

For M:: 32

!'eM :: (10&2 32)Pb:: Sx 10-7

5x 10-7 == 2J 2".2(5E6))=> Eb= 524 x 10-6lI!l 1024'-'1

S; :: EbRb :: 524 x 10-6 X 256,000 =134W

B :: 256,000 :: 512 kHz
T 1012 32
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Chapter 14

14.1-1 The following signals represent 2 sets of Smutually orthogonal signals.

J ,_
l--~·T., t- .»

~_-I~__~L~~1 'b

-k~

~H~--~-

I

'JTb- -{ ...
-+-+-+--+-'--If---t-.........;.

Fig. SI4.1-1

14.1-1

~~
~

I ~, ~

:.2.T t,-- -~ "'1:tJ ~

!J .,- "'-rJTe- .. ..L
2.;.T-

,. e

I C

\J'T!
~

~

_.J-
\fTc, _.1-

Z"1:

FiC·SI4.1-1
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14.1-3 I) (l,1.0)is-b-[I+~sinlVoI]
<0} To

21r
lVo=

To

:lA.rTo
oj./.ffo~~ r---+-

-1/v=e

Fig. SI4.1-3
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~) -f, lot: ) .f~ l-c)
14.1-4

~
It
'fII! la-I I)-~J "1 2 )

a.
~

.. .L- "oro "0 ...... ~ si +-*

VTD
(-1;2 1 'I 'I")

-wi
If

-I) it) -r., ft.)

"f 1\
ft ~

.." J'l-t -t 'b -t-'

..i. - a..."'t ~ (-::2) "l1.2-) 2; S)
(3/ -::2; '3/4f) I)

FiR. 514.1-4

b) The energy ofeach signal is:

£1 =1+4+9+1+16 TO =31
To

£2 ::::: 4+ 1+ 16+ 16+4 To::::: 41
To

£3 =9 + 4 + 9 + 16+ 1To =39
To

£4 = 4 + 16+ 4 + 4 + 0 To = 28
To

c) F3· F4 =(-6-8 +6+8 +0)::::: O. Hence. /)(1) and!4(I) are orthogonal.

14.1-) Let X(I) =XI, X(l + I) =x2 X(I +2) =x3
We wish to detennine

Since the process x(t) is Gaussian. x.. x2. x3 arejointl)' Qaussian with identical variance

( (12 == (12 =(12 =Rx(O) =1). The covariance matrix is:
XI x2 x3

[U
2

(1"1"2
u"" ]XI

K = (1x2XI
(12

(1X2X3 Also
X2

(1X3XI (1 X3X2 a 2
X3

so

a XIX2 == CTX2XI =xlx2 S X(I) x(t + 1) == Rx (I) =.!.
e

- I
a X2X3 =CTX3X2 == x2x3 = x(t+ 1) x(1+2) =Rx(I) =

e

a XIX3 =CTX3X1 =xlx3 =x(t) x(t +2) =Rx (2) =~
e
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e

K= .!
e
J 1

e2 e

1

e2

I
e

and

. }----........
5""

14.3-1

And

1 -rI:Au%;%j
PXI X2X3 (x'%2%3) =(2nl'\tfKi e ' )

J

s7 t,.........-_·..~-tl-.t=:

FiR. SI4.3-1

P(CjmJ) =PrO{n, <i) and p(CjmM) =PrO{n. > ~a)

Hence

and

Hence
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Hence the average pulse energy E is

Also

Hence

Which agrees with the result in Eq. (13.52c)

14.3-2 p(qm.) =p(C;m4) • p(C;ms) =p(Clma)
p(Cl'"2) =p(C\m)) = p(C/m6) =p(C\m,)

p(qmd =~n 1 < i. n2 > -;)

-[I-~~)][I-~iv)H-~~)r
P(C\m2) = ~Inll < i. 82 > ~a)

= [1-2~~)] [1-~Jh)]
and

P(C) =Hp(Clmd + p(C\m2)J=t[1-~Jb)] [2-3qJh)]
P,M =1-P(C)=t~Jb)[5-3~iN)]

- &,!2- ----....
c....~ltte.. 1--....-c:1.)-~'""""'i~"'p.r4tc>r ~

to; S,:1.+ .$c.l~t

r..s.2. I~~t

•

Fie. 514.3-2
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The average pulse energy E is

E=i({(i)'+(i)}{(i)'+(~)'])=~'

and I.

p... -iQ (rn [S.3Q(JJ)]
=25Q (~) assummg Q(~) «1

This perfonnance is considerably better than MASK in Prob. 14.3-1, which yields

P,M =1.7SQ (~02~Eb ) for M = 8

14.3-3 In this case, constants a" 's are same for k =I, 2, ..... M. Hence, the optimum receiver is the same as that

in Fig. 14.8 with tenns a" '5 omitted.
We now compare ,·s), r's2' .....r·sM .

Since r· SIc =.fir cose" is the angle between' and sIc , it is clear that we are to pick that signal Sic with
which , has the smallest angle. In short, the detector is a phase comparator. It chooses that signal which is
at the smallest angle with ,.

Fit. 514.3-4

I
M:,

~ • • ...

•

1
• N:,-

~ •
• •

Let

Then

(-d -d -d)
5)= 2' 2' ..·..'2

14.3-4 Because of symmetry,

p(qmd =P(C!m2)=.. ···= P(C!mM)
where M =2N

d -d
5·· =:- or-

!J 2 2

Nd2
and £1 = £2 =.....=EM =-=E

4
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and
p(C} =P(C!m\)

P,u - I-p(cl =1-[1-2~J~Jr
Here, M =2N • Hence, each symbol carries the infonnation 1082 M EO N bits .

Hence

and

..AI P(mo} d ~ I
JJ =-In--+- ,-I ~

2d p(mtl 2

=~1n2+! Fil.514.3-5
2d 2

p(C!m,l ~ P(C!m-,) =!'rob.[n, > -(d - pll - 1-~;~J

P(C!mo)= Prob an,l < pl- 1-2~~;/2J
P(c) =~ p(qmo)+±P(q~)+± p(C!m-l)

·H2-~*J]-2~Pi2J

14.3-5

Also

Hence

1-)1- )2E_ 1n2 2E+ 1n2
PeM=1-P(C}=-2

1
.~.+ ~

2~E/..AI 2~E/..AI

14.3-6 P,M =1- P(C}

p(C) =~(p(qm\)+ p(q'"2)]

p(C!m\)-_l lJe-[<ql-dY+tll'.)Idqldq2
JI.,\j RI

3d

=...!.. TJq1lln(K!B) e-(QI-d)2+qU""]dq dq
Jl-o\I J -q. tIn(K!B) 2 Io
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~4

•

14.3-7

and

•

Note that
d d

51 =-"2;1 -"2;2.
d d

53 = "2;1 -"2;2.

d =~O.4E - ~O.1Eb

•
Fig. 514.3-6

,
, '.,

,,' t'~ ... ,
(' . ".'~

Fla. 514.3-7.
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&(~)

~
$;,./i ') ~ ~(~) 5...('1:) -sst'!)-I

~
=T" ~~ ~..

j i -t..
0 1b 0 i "lb 0 !Iz "Ii. ot.. c t:. 0 T,b

-.s- ::a. ~ _d
VTj, -~

Fia. S14.3-7b

(c)

assuming J :Ii )« 1
~l2 20'"

and

p{£!ms)=4J ; )l2 20'11

We also observe that E. the average energy is E= ~(4~2 ) = O.4d2

E =O.4d
2 =02d

2
and...!!.- =JSE and d =JSE

JJ v'I O'~ 20'" 4JJ 2JiO'II &.AI

Therefo.. Plq..,)"4~J~)
The decision region R2 for "'2 is shown in Fig.• and again in Fig. C-I. R2 can be expressed as the ftrst
quadrant (horizontally hatched area in Fig. C-I) - AI' Thus

1'(Cf"'2) =nojse origmating from s2 lie in R2

=P(noise lie in lst quadrmt) - p(noise lie in AI )

• [1-~2~Jr-1'(noise oriainatilla fiom" lie hi AI)

But P(noise lie in At) =±[p(noise lie within outer square) - P(noise lie within inner square)J(See

Fig. C-2)

=i[{Inti. in21<i)-{lntl.ln21<~)]

-±{[1-2~2~Jr -[1-2~~)f}
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14.3-8

1[ ~ d) ~ d )]=- -4 - +4
- 4 20'n 2J2O'n

and

and

Moreover, by symmetry

P(~m2):: P(~ml):: P(tim3) =P(~m4)

Hence

. ...1I.loo&..-:--"'-"'- ..._ .•.-._...

Fig. S14.3-7c

•

Fig. S14.3-8

1 4 1
p(c) =- I:4P{C/m; )= -[P{C1ml) + P{C!'"2) + P{C1m3) + P{C/m4)]

16 ' ..I 4

The decision region RI for ml (see Figure) can be expressed as

RI =outer square ofside d.fi - ~ (outer square - inner square of side d)

=1. outer square of side dJ2 +..! inner square of side d
4 4
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Now p(elm1) = Prob(noise originating from ml lies in R1)

=.!. p(n lie in outer square) +! P(n lie in inner square)
4 4

=iil~< ~)+~{Inl<i)

=~[1-2~~)r +~[I-2~~)r
Similarly R2' the decision region for "'2 (see figure above) can be expressed as

R2 = outer square of side dIi _.!. (outer square - inner square ofside d)
2

=1..outer square ofside dIi _.!. inner square of side d
2 2

and p(<:1"'2) = noise originating from "'2 lie in R2

·iil~<*)+i~lnl<~)

=i[1-2~iN)r +i[I-2~Jh)r

Zl"",:,~ _. -'f' .<{.. ':::::':'?-.:"- .,'
,."' ..... ~ .... 1>· d,.- ._ :;e:,:... -.' .
.~.. _--~.- .

Po ~ ~4

The decision region R3 for mJ can be expressed as

R3 =R,4 + Rs - Rc
and

p(C1m3) =Prob(noise originating from mJ lie in R3)

=P(noise in R,4)+ P(noise in Rs) - P(noise in Rc)

=p(n\ >0, In21<d)+i1In11, In21<*)-~[1In\l. In21<*)-~ln11, In21<~)]

=~[1-2~&)H[I-2~iN)r -~{['~2~1N)r -[1-2~~)J}

=~['-2~gd)H[I-2~~)r +~[I-2~~)J

p ••• ,,- .....

· - ", · 1.... "'.'

~
'.~ 2A

"'4~:.-r- f
-- -.1 ~

~A
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The decision region 14 for m. can be expressed as

I4=RA -RB
and

P(qm4) =P(n) > -d, n2 > -d) - ~{p(lntl: In21 <d)- ~lnll, In21 <12)}

+-(d8))' -±[J-2{d8))'+±[1-2~iJ
For any practical scheme Q(.)« I, and we can express

[l-kQof s;1-2kQ(·)

Using this approximation, we have

p{qml)=I-~h)-3~~)

P{qm2) == 1-2~h)-2qJ:~)

p(qm3)=1-2a(d8)-~h)-a(~)

p(qm4) == 1-a(d8)-a(h)
Hence

Now

Therefore

And

so that

Therefore

Moreover

Hence

And

£1 =d2 , £2 = 2d2 , £) =4d2 , and £4 .. &/2.

E.. i(d2 +2d2 +4d2 +&/2) .. ~ dZ

E E
Eb=-=

logz 16 4

!J. .. E =~d2
..AI 4~ 16.Jj
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---------------------------------------

P.M =1- P(C) =~Q(J 8 Eb )
e 2 IS JJ

Comparisoo ofthis result with that in Example 14.3[Eq.(14.S7)] shows that this coofiguration requires
approximately 1.5 times the power of the system in Example 14.3 to achieve the same performance.

14.3-9 If 51 is transmitted, we have

ht=E+a+/iol

~ =a=.[i n2

b_ l =-E+a-.[i 01

b-2 sa-.[i n2

and

Note that

bl > b_1implies E + a+.[i 01> -E+a-,[i nl or nl >-Ii
hI >~ implies E+a+/i 01> a+IE 02 or "2 < /i +01

hi >h_2 implies E +a+JE nl >a-.[i 02 or "2 > -(JE +nl)

Hence

Similarly

Hence

P(Cjm.}=Prob.{hl >b_ lo b2. h-2' bJ. b_3 .... bk> h_k)

= prob.[nl > -JE. In21 < (nl +JE). 1031 < (nl + IE)• .... lOkI < (Ol + JE)]
Since nl. n2 .... Ok are all independent gaussian random variables each with variance JJ/2.

p(qml) = [p(nl > -Ii) POn21 < 0l +JE)P(ln31 < °I +Ii) ... POnkI< nl + Ii)]

= I j e-nlIJJ[r+JE e-nlIJJdnt-ldn
,J1VJ -JE 111J+JE) j 1

= I j e-nlIJJ[I-2)yJE)JN

-

l

dnl
J1VJ -JE \. JJ/2

L °1 +/iet y - -J.,,-===-
- ~JJ/2

Also

{ 1U)2}I GO Y-~:;J N 1
P.M=I-p(qml)=I-~ Je' [1-2Q(y)] - c6'

'/2tr_~ •

E E
b = log2 2N

14.4-1 The on-off signal set and its minimum energy equivalent set are shown in Figs. (a) and (b). respectively.
The minimum energy eqUivalent set oforthogonal signal set in Fig. (e) is also given by the set in Fig. (b).
Hence. on-off (Fig. a) and orthogonal (Fig. c) have identical elTOf probability. The set in Fig. (b) is polar
with half the energy ofon-offor orthogonal signals.
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""'"--0....----....···-ell
(A.')

-d 0
i:

e;,)

d- lQ.)

14.4-2 Here

Fig 514.4-1

Therefore

SI(I) =J20 ;2(1) 'I =l" <1>2

S2(1) =.JS ;1(1) ' 2=../5 <1>1

S3(1) = -../5 ;1(1) 13=-../5 <I>

The vector tl =.!.~Ii = .!.[../iO <1>1 - J10 <1>1 + J20 <1>2] = J20 <1>2 •
3 3 3

Hence the minimum energy signal set is given by

• .fiO ~ .fiO 40J2 .
SI(I) = SI(/)--3-;2(1) = ,,20 ;2(1)--3-;2(/) = -r-SID(t)ot

• .J2O r; J20 ~ 20Ji .
S2(1) = S2(/) - -3-;2(/) ="S ;1(1) - -3-;2(/) = 10,,2 COSWO' --3-SID (t)ol

A J20 r; J20 ~ 2M .
S3(1) =S3(/) - -3-;2(/) =-,,5 ;1(1) - 3;2(1) = -10,,2 COS(t)O' - -3-SID (t)ol

The optimum receiver - a suitable form - in this case would be that shown in Fig. 14.8a or b.

...... ,....-..
,-'

Fig. 514.4-2

14.4-3 To flDd the minimum energy set, we have II =1.(11 +12 +$3 +14) = -fJJ -~4 .
Hence the new minimum energy set is

11 =SI-~ -;" =Ji fSl +~. 12 =-fJJ +Ji~.;3 =-13 fSl-;,., i4=~ -Ji;,.
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Note that all the four signals fonn vertices ofa square because (il 52). (i2 i 3). (i) i4). and (i4 i l ) are

orthogonal. The distance between these signal pairs is always 2,/2. This set is shown in Fig. SI4.4-3a.

Fia- 514.4-3

-----.. y ......-I S .,
1

$4"",c. CI t:
't.: 1i.

Observing symmetry we obtain

P(C) = P(C!ml) = P(C1"'2) = P(C/m3) = P(C!m4)
=1'(nl >-.fi and n2 > -./2)

'[I-~~Jr
'['-~iv)r +-~~)r =f!-(X116)j'

P'M =1- pee) =1-(I-Q(3.16)J2
:: l.5b 10-3

14.4-4

t6.3 t.. rJ ".,lr' -e.. 5,""0 i~ I~"i

va) The... orth0jcnal bqsi~ Set' CD) TF;e. "t9nQ! .s~t ~Tht: MiniMuM c.M'f.!y«t

c

-,If t----

I ., .... ..,

s.3f)

o

Fig. 514.4-4
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and

P(C\m3)" P(C!ml)" J nl <~)= l_ JY.#-)== 1-Q(7.07)
~ l 20.yS ,. vl0-5

p(C\m2) == 11nl < 20Js) == 1-2Q(7.07)

P(C) • j[2P(e1ml) + P(C1"'2)] • j [2 - 2Q(7.07) + t'- 2Q(7.07»)

4
.. 1-3"Q(7.07)

P,M == 1- P(C) == ~Q(7.07) == 1.03 x 10-12

Also £1" £3 • (5'*0 r == 4 x 10-3

£2 ==LoJwr +LoJior .. 2xl0-
3 E.. -j(£I+E2+£3)=ixl0-2

Mean energy of the minimum energy set:

Emin == -j(2 x 10-3 +0+2 x 10-3) .. ~ x 10-3

14.4-5 The use ofEq. (14.76) and signal rotaiion shows that the- minimum energy set in this case is identical to
that in Prob. 14.4-4. Hence the minimum energy set is as shown in Fig. SI4.4-4c. this situation is identical

to that in Prob. 14.3-5 with d ..~. From the results in the solution of Prob. 14.3-5, we have
10.yS

2
E.. !- .. 10-3

2

Also, we are given SII((&)" .JJ .. 10-5 • Hence, ..AI .. 2 x 10-5•
2

(a) From the solution ofProb. 14.3-5

P'M .. tQ(7.02) + Q(7.12) .. 1.09 x 10-12

(b) and (c) identical to those in Prob. 14.4-4

(b)

14.4-6 (a) The center ofgravity ofthe signal set is (11 +12)/2
Hence, the minimum energy signal set is

(11+12) 11-12 (11+12) h-51
xI = 51- =-- cl x2 =12 - =--.....l.

2 2 2 2
The minimum energy signals are

%1(')" 0.s-O.707sin O)o,}
2 (&)0 =20001r

%2(') =0.707sin 0);' -O.s

O.OOI( 0) ,)2
EX1 = ! O.s-O.707sin 20 dt=0.4984xlO-5

E%2 .. EX1 .. 0.4984 x 10-5 . We arc given ..AI .. Sx 10-6

Ij, =~J2~~ )= Q(4.46S) • OA Ix 10-5
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(c:) We use Gram-Schmidt orthogonaJization procedure in appendix C to obtain

- YI
Yl =/.vII

/Yd =JJyfdt =lOOt

"~ s~.•.••••.•.•..••....•...•.•..•.. tit.
. St

t:.....f.OO\ t. •

S,it) 5:.1.1:.)
~

.i y,~)

.
o·cC! <:- O'ODI t,.

Fia·5.4.4-6
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Chapter 15

15-1.1 PI:: 0.4, P2, :: 0.3, PJ :: 0.2 and P4 '" 0.1

H(m) :: -(PI log PI + P2, log P2, + PJ log 1') + P4 log P4 )

=1.846 bits (source entropy)

There are 10' symbols/so Hence, the rate of infonnation generation is 1.846 x 10' bits/so

15.1-2 Infonnation/element =log2 10", 3.32 bits.

Infonnation/picture frame" 3.32 x 300,000:: 9.96 x lOS bits.

15.1-3 Infonnationlword "log2 10000 '" 13.3 bits.
Infonnation content of 1000 words • 13.3 x 1000 =13,300 bits.

The infonnation per picture frame was found in Problem 15.1·2 to be 9.96 x lOS bits. Obviously, it is not
possible to describe a picture completely by 1000 words, in general. Hence, a picture is worth 1000 words
is very much an underrating or unde~tating the reality.

15.1-4 Ca> Both options are equally likely. Hence,

/ =log{is) =I bit

(b) P(2 lanterns) =0.1

/(2 lanterns) =log2 10 =3.322 bits

15.1-5 Ca) All 27 symbols equiprobable and P(Xj) =~7'
HI(x) =27(t-r log2 27) =4.755 bits/ symbol

(b) Using the probability table, we compute
27

Hw(x):: - rp(x;)log P(x;) =4.127 bits/symbol
/.1

Ce) Using Ziprs law, we compute entropy/ward Hw(x).
8727

Hw(x) =- r Per) log Per)
,=1

8727
=- ~ jUlog(jU):: 9.1353 bits/word.'" , ,,=1

H1Jetter =11/82/5.5-2.14 bits/symbol.

Entropy obtained by Ziprs law is much closer to the real value than HI (x) or H2 (x).
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7 63
15.2-1 H(m) =L P; log P; =- bits

1..,1 32

Message Probability Code 5, 52 5, s. 5,

m\ 112 0 112 0 1/2 0 112 0 112 0 112 0
m2 1/4 10 1/4 10 114 10 1/4 10 1/4 lor112 I
m3 1/8 110 118 110 1/8 110 1/8 110]-'+114 11
m. 1/16 1110 1116 1110 1/16 1110J-'"1I8 111
m, 1/32 11110 1/32 11110r1l16 1111

"" 1/64 111110r 1132 11111
m1 1164 1JJ1J1

I I 11 111
L= LP;LI =-(1)+-(2)+-(3)+-(4)+-(5)+-(6)+-(6)

I 2 4 8 16 32 64 64

63 b' d"• 32 mary 19lts

Efficiency TJ =H(m) x 100 .. 100%
L

Redundancy r .. (100- TJ)" 0010

7
15.2-% H(m) .. - L P; log P; .. 2289 bits

;=1

.. 2289 .. 1.4442 3- ary units
1082 3

Message Probability
1/3
1/3
1/9
1/9

1127
1127
1127

Code
o 1/3
I 113

20 1/9
21 1/9

220r 1/9
221
222

o 113
1 1/3

20j1/3
21
22

o
I
2

7 I I I I I
L ... LP;Lj "-(1)+-(1)+-(2)+-(2)+3-(3)

;-1 3 3 9 9 27

13 3 d".. - - ary 19lts
9

... 1.4442 3-ary digits

. H(m) 1.4442
EffiCiency TJ"--..-- x 100 .. 100%

L 1.4442

Redundancy r :; (1- TJ)IOO .. 0%
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4
15.2-3 H(m) = - r P; log P; = 1.69 bits

;=1

Message Probability
0.5
0.3
0.1
0.1

Code
o 0.5

1 0 0.3
110""" 0.2
1 1 1J

o 0.5
101--.- 0.5
IIJ

o
1

L =r P; L; = 0.5(1) +03(2) +0.1(3) + 0.1(3) =1.7 binary digits

Efficiency 7'/ =H(m) x 100 =1.69 x 100 .. 992%
L 1.7

Redundancy r =(1- 7'/)100 .. 0.8%

For ternary coding, we need one dummy message of probability o. Thus,

Message Probability
0.5
0.3
0.1
0.1
o

Code 5\

o 0.5
1 0.3

20[j0.2
21
22

o
1
2

15.2-4

L .. 0.5(1) + 03(1) + 0.1(2) +0.1(2) =12 3-ary digits

H(m) =1.69 bits = 1.69 =1.0663 3-ary units
log2 3

. H(m) 1.0663
EffiCIency 7'/" - x 100 ..-- x 100 .. 88.86%

L 12

Redundancy r =(1- 7'/)100 .. 11.14%

Message Probability
1/2
1/4
1/8

1/16
1/32
1/64
1/64

Code
o 1/2
1 1/4

20 1/8
21 1/16

22rJ1/16
221
222

o 1/2
1 114

20J 1I4
21
22

o
1
2

L =r P; L; .. .!! 3- ary digits
16

From Problem 15.2-1, H(m) .. :~ bits .. 1242 3-ary units

. H(m) 1242
EffiCIency '1" - x 100 =- x 100 '"' 94.63%

L 13125

Redundancy r .. (1- 7'/)100 =537%
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15.1-5
Message Probability

1/3
113
1/9
1/9

1/27
1/27
1/27

Code 51 52 53

I 113 I 1/3 1/3 1 113
00 1/3 00 113 00 1/3 00 113

011 1/9 011 1/9 OIlj-f219 010 1/3
0100 1/9 0100 1/9 0100 119 011

01010 1/27 01010r1l9 0101
0101 lOr 2/27 01011
010111

11213 0
00 1/3 1
01

15.1-6 (a)

L·r P;L; • :~ .. 2.4074 binary digits

H(m) =2289 bits (See Problem 15.2 -2).

. H(m) 2.289
EffiCiency 1] =--x 100= - x 100 =9'-08%

L 2.4074

Redundancy r :: (J -1])100 =4.92%

H(m) = 3(1 log3)-1.585 bits

(b) Ternary Code

Message Probability
113
113
1/3

Code
o
1
2

. 1.585
H(m) =1.585 bits :: - =1 3-ary unit

log2 3

Efficiency 1] =H(m) x 100 =100%
L

Redundancy r :: (1-1])100 =OOA.

(c) Binary Code

Message Probability
113
1/3
1/3

Code 51

1~213 0
00 1/3 1
01

L :: .!.(J) +(2).!.(2):: ~:: 1.667 binary digits
3 3 3

. H(m) 1.585
EffiCiency 1]::-- X 100::-- X 100 =95.08%

L 1.667

Redundancy r .. (1-1])100 .. 4.92%
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(d) Second extension - binary code

H(m) =1.585 bits

. H(m) 1.585
Efficiency" =-- x 100 '" -- x 100 =98.390A.

L 1.611

Redundancy 1 ;r; (1- ,,)100 '" 1.61%

MaPle PrOb COde II 12 ., Ie II So 51

m,mI V9 001 219 01 2i9 01 2i9 01 2J9 01/'. 00;'" IJ?SI9 0
mlm2 119 0000 119

OOIJ~
10 219 10 219 10 219 01 1/3 00 419 I

m,m, 119 0001 119 0000 119
OOI~~

II 219 11 219 10 219 01
m2m, 119 \10 119 0001 119 0000 119

001]f219
000 219 II

m2m2 119 III 119 110 119 0001 119 0000 119 001
mImI 119 100 119 111 119 110 119 0001
mllll, 119 101 119 100 119 III
m,m: 1/9 010 119 101
m,m) 119 011

15.4-1 (a) The channel matrix can be represented as shown in Fig. SI5.4·1

(b)
1 1

H(x) '" P(xl)log--+ P(x2)log--
P(x\) P(X2)

= .!.log2 3+ ~log2l =0.918 bits
332

Fig. SI5.4-1

To compute H(xIY), we find
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and

Thus.

Also,

H(xly) =P(Yt)H(x!Yt)+ P(Y2)H(%!Y2)

• .!!(0.779)+E.(0.624):: 0.6687
45 45

l(xjy):: H(x) - H(xIY) =0.918 -0.6687 =0.24893 bits/ binit

H(y) =~ P(y;) 10g_I_::.!! log 45 + 32 log 45 :: 0.8673 bits/ symbol
; P(y;) 45 13 4S . 32

H(Ylx):: H(y)-I(xIY):: 0.8673-0.2493:: 0.618 bits/ symbol

15.4-2 The channel matrix P(YjIXi) is

[
I 0%; 0]

Yj 0 P I-p

o I-p P

P(YjIXj)P(%/)
Now we use P(x;IYj) =~ to obtain

~ P(x; )P(yjlx;)
;

(p)

(eR)

(a()

j".
X • ,. -Yo, I

P

Fia·515.4-2

( P)

(~)

(~ )

P(x;IY;) matrix as Yj [~ : x, l!P]
o I- p P

H(x):: I: P(x;)log--!.- =-Ploa P- 2QlogQ with (2Q =1- P)
P(x;)

=-[Plog P+(I- P)IOg(l~P)] = O(P) +(1- P)

1
H(xIY) =rrp(Yj)p(%;IYj)log---

; j P(%;IYj)

'" Plogl +rIplog..!.+(I- P)IOg_I_J+ J(1-p)log_I_+ PIOg..!.]
, P I-p' I-p P

• 0+2QO(p) =(1- P)O(p)

l(xIY) =H(x) - H(xIY) =O(P) +0- P) - (1- P)O(p)

= O(P)+(I- pX1-O(p)]

Letting P=20<P) or O(p) =10aP
l(xIY) =O(P)+(1- PXI-log,8)

~J(xIY)=O or .!..[O(P)+(I-PXI-log,8)]=O. This means
dP dP

.!..[PIOg P+ (1- P) -(1- P)log(l- P)O-log,8)] = 0
dP

log P -log(1- P) +[I-Iogp] =0
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P
Therefore log- =-1 + log fJ

I-P

Note: -1 +10&2 fJ =-log22+1082 fJ =10&2 fJ
2

P fJ
--=:-

1- P 2
=:> p=L. and )_p=_2_

fJ+2 fJ+2
so

fJ fJ+2 2 fJ+2 2 fJ+2
C -= MAX l(xIY) =--log-+-Iog--+--(I-logfJ) =)og--

P+2 P fJ+2 2 1J+2' • ' IJ
loa.!

IJ

15.4-3 Consider the cascade of2 BSCS shown in Fig. SI5.4-3. In this case
Pyfx(lll) =(1- PI )(l-1!z)+ l\1!z =: 1- l\ -1!z -2l\~

Pyfx (01) =(1- ~)1!z + 1\ (1-1!z) = l\ + 1!z - 2l\ P2

(a)

~--~-----""--oI!l".,e---.O

I

f'

Hence, the channel matrix of the cascade is

[1-PI-~-2l\~ l\+1!z-2Ji1!z ]=[I-Ji
Ji+~-2P1P I-Ji-1!z-2JiP 1\

This result will prove everything in this problem.

(a) With ~ =1!z =~, from the above result it foUows that the channel matrix is indeed M2•

(b) We have already shown that the channel matrix oftwo cascaded channels is MI M2 .

(e) Consider a cascade of k identical channels broken up as k -1 channel cascaded with the "til channel.
If Mt _ 1 is the channel matrix ofthe first k -1 channels in cascade, then from the results derived in part (b),

the channel matrix ofthe k cascaded channels is M k =Mk-I M. This is valid for any It. We have

already proved it for" =2, that M2 =M1. Using the process of induction it is clear that Mk =Mk
.

We can verify these results from the development in Example 10.7. From the results in Example 10.7, we
have, for a cascade of 3 channels

1- P£ =(1- p,)3 +3P,2(l- P,)

= 1-3~ +3~2 - p,3 +3P,2 -3P,3

=: 1-3P, +6P,2 _4P,3
and

2 3P£ =3p, -6'p' +4P,
Now
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3 [I-PeM ::
p.

Clearly

P£ ... 3p, - 6P.Z+4p'3
which confinns the results in Example 10.7 for k =3.

(d) From Equation 15.25

C, =I-[P£ 10g-
I
-+(I- P£ )log-!.-]

P£ I-P£
where PE is the error probability ofcascade of k identical channel.

We have shown in Example 10.7 that

P£ =1-[(1- Pe)k + I: . k! . p/(I- Pe)k-i ]
j_Z.4,6J!(k- J)!

If kPe « I, P£ ;; kP.
and

c, =1-[kPe IOg-
I
-+(I-kP.)IOg--!.-]

kP. 1-kP,

15.4-4 The channel matrix is

q

o

Yz
o
q

Y, -

p

p

q =I-p

Let

Yl =0

yz = I

Y3 =£

Also,

P( I ) P(Ytlx\)P(x\) q/2 I
X\Y\ ... - - ... -=

P(Y\) q/2

P(XZIYl) =P(ytlxz)P(xz) = 0
P(Yl)

P(xIlyz)= P(YZIXI)P(XI) ... O
P(yz) - -

P(x I ) .. P(yzlxz)P(xz) = q/2 = I
2 Y1 P(yz) q/2

P(xIIY3)= P(Y3I x\)P(XI) =p/2 s!
P(Y3) p 2

P(xZIY3) =PCnlxz)P(xz) =p/2 =!
P(Y3) p 2
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15.4-5

q
P(XloYl) =P(Xl)P(Yllxl) ='2
P(Xl,Y2) =P(xl)P(Y2lxl) =0

p
P(Xl,Y3) =P(Xl)P(Y3Ix l) ='2
P(X2,Yl) =P(X2)P(Yl!X2) = 0

q
P(x2,Y2) = P(x2)P(Y2Ix2) =

2

P(x2,Y3) =P(x2)P(Y3Ix2) =J!..
2

Therefore.
H(x) =-P(xl) log P(xl) - P{x2) log P(x2)

1 1
=-+-= 1

2 2

H(xIY) =I:I: P(Xj.Yj) log , 1
j j P(x;lYj)

q 1 1 1=-(0)+0+- p+O+-q xO+- P = P
2 2 2 2

l(xIY) =H(x) - H(xIY)

=1-P bits I symbols

.i

Note that for cascaded channel. the output z depends only on y. Therefore.

P{zkIYj,Xj) = P(zkIYj)

By Bayes' rule

and

FiC. 515.4-5

if
•

It can be shown that the summation over x ofthe tenn inside the bracket is nonnegative. Hence, it follows
that

H(xlz) - H(xIY) ~ 0

From the relationship for l(xIY) and l(xlz), it immediately follows that
l(xIY) ~ l(xlz)
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M 1 JM15.5-1 We have H(x) =LMPlogr= _M-plogpdx

Thus,
of

F(x,p)=-plogpand Op =-(l+logp)

;t(x,p) =p and 0;, =Iop

and J~pdr = 1

Substituting these quantities in Equation 15.37, we have

-(l+logp)+a) =0= p=eal -
t

and

Hence,

eal-) =_1_ andp(x) =_1-
2M 2M

Also,

JM 1 JM IH(x): MP(x)log-dx= M-log2Mdx=log2M
- P(X) - 2M

15.5-2 We have H(x) =-J;plogpdr,

. of
F(x,p) =-plogp and - =-(l+ logp)op

;t(x,p) = px and 0;1 =xop
;2(x,p)=pand 0;2 =1op

Substituting these quantities in Equation 15.37, we have

or

and

Hence,

I d a .. -I "a. =-- an e" =-a) =.IS
A

so

To obtain H(x)

{

I -v
-e 7.4

p(x)= :
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H(x) =-J;p(x) log p(x)dx = - J;{-log A - ~ lOge] dx

= 10gAl;p(x)dx+ Io,:ef; xp(x)dx

• log A+ loge =10g(eA)

15.5-3 Information per picture frame = 9.96 x lOs bits. (See Problem IS.1). For 30 picture frames per sec:ond, we
need a channel with capacity C given by

C=30x9.96xI05 =2.988xIO' bits/sec.

But for a white Gaussian noise

C =B log (1 + ~ )

We are given.!:: SO db =100,000 (Note: 100,000 =SO db)
N

Hence.
B= 1.8 MHz

15.54 Consider a narrowband AI where 41 -+ 0 so that we may consider both signal noise power density to be

constant (bandlimited white) over the interval !if . The signal and noise power 5 and N respectively arc
given by

5 =2Ss(OJ)/if and N =2S,,(OJ)4f
The maxLfl1um channel capacity over this band 4f is given by

C4I = 41 log [~]./ifIOg [Ss(OJ)+Sn(tlI)]
N Sn(tlI)

The capacity of the channel over the entire band (/1,h) is given by

C =Jh log [5s(tlI) +S,,(tlI)]df
II Sn(tlI)

We now wish to maximize C where the constraint is that the signal power is constant.

2J~2 5s(4) df =5 (a constant)

Using Equation IS.37, we obtain

(} I [5s +Sn] OS, 0-og +a =
OSs Sn OSs

or
1

S +5n =- - (a constant)
S a

Thus,

This shows that to attain the maximum channel capacity, the signal power density + noise power density
must be a constant (white). Under this condition,

C=Jhlog [Ss(tlI)+5n(tlI)]df= Jh IOg [ I ]dfII 5n(tlI) II aSn(tlI)

=(12 - /,)Iog (- ~)-J~210g [S,,(OJ)]d/
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15.5-5 In this problem, we use the results of Problem IS.5-4. Under the best possible conditions,

c= !Jlog [Ss(~)+Sn(ClI)]- Jft2 10g [Sn(4I)]df

constant

We shall now show that the integral Jft2 10g [Sn(ClI)] df is maximum when Sn(4I) = constant if the noise

is constrained to have a given mean square value (power). Thus, we wish to maximize

under the constraint

2iR log (Sn (ClI)] df = N (a constant)

Using Equation 15.37, we have

a as-a(logSn)+a-n =0
Sn aSn

or
1

-+a=O
Sn

and
1

Sn(ClI) =-- (a constant)
a

Thus, we have shown that for a noise with a given power, the integral

ift2 10g [Sn(ClI)]d/

is maximized when the noise is white. This shows that white Guassian noise is the worst possible kind of
noise.
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4:
~ Chapter 16
"t'

3
16.1-1 2

11 ~ L (~) =(~)+(P}+(P)+(P)
i=O

2048 ~ 1+ 23 + 23 x 11 + 23 x 77 =2048

16.1-% (a) There are (j) ways in which j positions can be chosen from n. But for a ternery code, a digit can

be mistaken for two other digits. Hence the number of possible errors in j places is

(jX3-1V' or 3" ~ 3k t (j}2J -+ 3,.-k ~ t (j)2 j

J=O i-o
(b) (I 1,6) code for t = 2

This is satisfied exactly.

16.1-3 For (18,7) code to correct up to 3 errors
3

211 ~ I: (}8) or 211 ~(b8)+(I8}+U8}+08)
j.O

18' 181 18'
::: 1+-'+-'-+--' =1+18+153+816=988

17! 2! -l6! 3! 15!

2 11 =2048
Hence

3
2

11 >I:eS
)

i=O

Clearly, there exists a possibility of 3 error correcting (18,7) code. Since the Hamming bound is
oversatisfied, this code could correct some 4 error patterns in addition to all patterns with up to 3 errors.

16.%-1 GH T
= [lk p] [~J
=PfIjP

-0

16.%-% c::: dGwhere d is a single digit (0 or 1).

Ford =0

c=O[l 1 1]-[000]
Ford::: 1

c =1 [1 1 1]::: [IIIJ
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16.1-3 e =dG where d is a single digit (0 or 1).

Ford =0

e=O [11111]=[00000]

Ford =1

e =1[1 1 1 I 1] =[1 1 1 1 IJ
Hence in this code a digit repeats S times. Such a code can correct up to two errors using majority rule for
detection.

16.1-4 0 is transmitted by [000] and 1 is transmitted by [11 1]
(8) This is clearly a systematic code with

G-[ll1]

16.1-5 (8)

100 .. ·01

010 .. ·01

0.....0.;,..0;;.,...._.,..;: U
I~ P

p=[] Note that m" I

(b)
Data word
000
o 0 1
010
o 1 1
100
1 0 1
110
111

Codeword
o 000
o 0 1 1
o 1 0 1
o 1 1 0
1 0 0 1
1 0 I 0
1 1 0 0
1 1 1 1

(c) This is a parity check code. If a single error occurs anywhere in the code word, the parity is violated.
Therefore this code can detect a single error.

(d) Equation (16.9a) in the text shows that cN T =O.
Now

and

rN T _{ee,)NT _cNT elHT .,RT

If there is no error , == 0 and

rN T =,nT =0
Also

NT .. [~,J. But since m =I, 1m =[1]

and
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If there is a single error in the received word r, e has a single 1 element with all other elements being O.
Hence
,nT = enT = 1 (for single error)

16.1-6
Data word Codeword
0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 1
0 1 0 1 1 1 0 I 0
0 1 1 0 0 1 0 1 1
1 0 0 0 1 1 1 0 1
1 0 1 1 0 1 1 0 0
1 1 0 1 0 0 I 1 1
1 1 1 0 1 0 1 1 0

From this code we see that the distance between any two code words is at least 3. Hence dmin =3.

16.1-7
Data word Codeword
0 0 0 0 0 0 0 0 0
0 0 1 0 0 J 1 I 0
0 1 0 0 1 0 1 0 I Observe that dmin =3
0 1 J 0 1 1 0 1 I
1 0 0 1 0 0 0 1 1
1 0 1 1 0 1 I 0 J
1 1 0 1 1 0 J 1 0
1 1 J 1 1 1 0 0 0

16.2-8 nTis a IS x4 matrix with all distinct rows. One possible H Tis:

1 1 1 1

1 1 10

I I 0 1

1 100

1 0 1 1

) 0 ) 0

100 I

HT = 0011 [P]= 1mo1 1 1
01 10

0101

1000

0100

0010

0001
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100000000001111
01000000000 I I 10
00 I 00000000 I 101
000100000001100
000010000001011

G=[lk p]= 00000 I 00000 I 0 I 0
000000100001001
000000010000011
00000000 I 000 I I I
000000000100110
000000000010101

For d =1 0 1 1 1 0 1 0 1 0 1

c =dG =[101 t lOt 010 t] G -10111010101 1110

(e) The minimum distance between any two code words is 3. Hence, this is a single error correcting code.
Since there are 6 single errors and 7 syndromes, we can correct all single errors and one double error.

(d) • =dlT

e s
1 0 0 0 0 0 1 1 1
0 1 0 0 0 0 1 1 0
0 0 t 0 0 0 1 0 1
0 0 0 1 0 0 I 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1
I 0 0 1 0 0 0 1 I
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r
101100
000110
101010

110 010000 111100 111
110 010000 010110 010
000 00000o 101010 101

16.1-10 <a> done in Prob. 16.2-'

o1 1

10 1

1 10

100

010

001

s

~ ,

16.2-11

six single errors

1 double error

[

1000101]
0100111

G=[lk P ]= 0010011

0001110

c-dG

100000
010000
001000
000100
000010
000001
100100

011
101
110
100
010
001
111
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4
0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

11 0 I

1 1 I 0

1 1 1 1

~

0000000

0001110

0010011

0011101

0100111

0101001

0110100

0111010

1000101

1001011

1010110

1011000

1100010

1101100

1110001

1 1 111 I I

101

111

o1 1

NT = 110

100

010

001

! !
0000001 001

0000010 010

0000100 100

0001000 110

0010000 011

0100000 111

1000000 101

s = ,HT where' = received code
c·,ee
c =corrected code

16.2-11 We observe that the syndrome for all the three 2-error patterns 100010, 010100, or 001001 have the same
syndrome namely 111. Since the decoding table specifies, =111 for' =100010 whenever e =100010
occurs, it will be comcted. The other two patterns will not be corrected. If for example, =010100
occurs, s. 111 and we shall read ftom the decoding table' = 100010 and the error is not corrected.

Ifwe wish to correct the 2-error pattern 010100 (along with six single error patterns), the new decoding
table is identical to that in Table 16.3 except for the last entry which s}1ould be

, !

010100 111

16.2-13 From Eq. on P.737, for a simple error correcting code
2,,-k~n+1 or 2,,-8~n+l-' n-8~log2(~+I)

This is satisfied for n ~ 12. Choose n =12. This gives a (12, 8) code. 8 T is chosen to have 12 distinct
rows of four elements with the last 4 rows fonning an identity matrix. Hence,
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001 1
0101
01 10
o1 1 1
1001

H T "" 1010
1 0 1 1
1 1 0 0
1000
0100
0010
0001

p
G=

100000000011
010000000101
001000000110
000100000111
000010001001
000001001010
000000101011
000000011100

The number of non-zero syndromes =16 - 1=1S. There are 12 single error patterns. Hence we may be
able to correct 3 double-error patterns.

16.2-14

!
0000
0011
0101
0110
0111
1001
1010
101 I

1100
1000
0100
0010
0001
1 1 1 1
11 10
1101

!
000000000000
100000000000
010000000000
001000000000
000100000000
000010000000
000001000000
000000100000
000000010000
000000001000
000000000100
000000000010
000000000001
100000010000
001000001000
000000010001

Data word
00
01
10
11

Codeword
000000
011011
101110
110101

The minimum distance between any two code words is dmin = 4. Therefore, it can correct all I-error
patterns. Since the code oversatisfies Hamming bound it can also correc:t some 2-error and possibly some
3-error patterns.
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001 1
0101
01 10
o1 1 1
1001

H T "" 1010
1 0 1 1
1 1 0 0
1000
0100
0010
0001

p
G=

100000000011
010000000101
001000000110
000100000111
000010001001
000001001010
000000101011
000000011100

The number of non-zero syndromes =16 - 1=1S. There are 12 single error patterns. Hence we may be
able to correct 3 double-error patterns.

16.2-14

!
0000
0011
0101
0110
0111
1001
1010
101 I

1100
1000
0100
0010
0001
1 1 1 1
11 10
1101

!
000000000000
100000000000
010000000000
001000000000
000100000000
000010000000
000001000000
000000100000
000000010000
000000001000
000000000100
000000000010
000000000001
100000010000
001000001000
000000010001

Data word
00
01
10
11

Codeword
000000
011011
101110
110101

The minimum distance between any two code words is dmin = 4. Therefore, it can correct all I-error
patterns. Since the code oversatisfies Hamming bound it can also correc:t some 2-error and possibly some
3-error patterns.
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(b)

1 1 10
10 1 1

T 1000 T
H = 0 10 0 and s = eH

0010
0001

6siDgle error-.{

7 double-error patterns

2 triple-error patterns {

100000
010000
001000
000100
000010
000001
110000
101000
100100
100010
100001
011000
010010
000111
001101

s
1110
1011
1000
0100
0010
0001
0101
0110
1010
1100
1 1 11
0011
1001
0111
11 01

16.3-1 Systematic (7, 4) cyclic code

g(x) =x 3 +x+ 1

For data 1111 d(x) =x 3+x2 +.1'+ 1

x3(x 3 +x2 +.1'+ 1) =x6 +XS +.1'4 +.1'3

.1'3 +x2 + 1

x 3 +x+ l)x6 +xS +x4 +x3

x6 +x4 +x3

x S

x S +x3 +x2

x3 +x2

x 3 +.1'+ 1

x2 +x+ 1

c(x) '" (x 3 +x+ IXx3 +x+ I) = x6 +xS+x
4

+x3 +x2 +x+ 1

The code word is 11111111
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x 3 +X+ l)x6 +xS +X4

X6 +X4 +X3

x S +x3

x S +X3 +X2

X2

The code word is 1110100
A similar procedure is used to fmd the remaining codes (see Table 1).

(b) From Table 1 it can be seen that the minimum distance between any two codes is 3. Hence this is a
single error correcting code.

d
1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

c
1111111
1110100
1101001
1100010
1011000
1010011
1001110
1000101
0111010
0110001
0101100
0100111
0011101
0010110
0001011
0000000

Table 1

(c:) There are seven possible non·zero syndromes.

for , =1 0 0 0 0 0 0 x 3
+x+ l)x

6

x 6 +x4 +x3

x
4

+x3

s=101

%4 +x2 +%

%3 +x2 +x

%3 +x+l

x 2 +1
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The remaining syndromes are shown in Table 2.

s
1000000
0100000
0010000
0001000
0000100
0000010
0000001

101
1 J 1
110
011
100
010
001

Table 2

(d) The received data is 1101100

+1

s(x) =x2 + I

,=101

r(x) =x6 +x5+.1'3 +.1'2

x 3 +X+l)x6 +x5 +x3 +x2

x6 +.1''' +x3

x! +x4 +x2

x5 +x3 +x2

x4 +x3

x 4 +x2 +x

x3 +x2 + x

x 3 x +1

From Table 2

t'=1000000

c=r$t'=IIOIIOO$IOOOOOO- 0101100

Hence d =0 1 0 I

16.3.2 g(x) = xII + x9 + x7 + x6 + x5 + x +1

c(x) =d(x)g(x)

1.

d l =000011110000, dl (x).,X7 +x6 +x5 +x4

d2 = 1 01 0 1 0 1 0 J 0 I 0, d2(x) ... xli +,r9 +x7 +,r! + x3 +,r

CI(,r) = dl(x)g(x) = x l8 +x17 + xl3 +,r12 +x ll +x9 +x8+x7 +x4

and
CI=00001100011101110010000

C2(X) =d2(X)g(x) =x22 +x18 +x17 +.1'15 +x13 +x8+.1'5 +.1'4 +x3 +x2 +x
and

C2 .. I 0 0 0 1 1 0 I 0 I 0 0 0 0 1 0 0 1 I I I I 0
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16.3-3 %+ 1)%3 +%2 +%+ 1

%3+%2

%+1

%+1

o
Hence %3 +%2 +x+l= (x+ lXx2 + I) =(x+ I)(x+ IXx+I)= (x+ 1)3

16.3-4 X+I)X 5 +X4 +X2+1

xS +x4

16.3·4

x2 +1

x 2 +x

x+l

x+1

o

Now try dividing x4 + x + 1 by x + I, we get a remainder I. Hence (x + 1) is not a factor of (x4 +x + I).

The 2nd-order prime factors not divisible by x + 1are x2 and x2 + x + I. Since (x4 + X + 1) is not divisible

by x2 • we try dividing bY (x 2 + x + 1). This also yields a remainder 1. Hence x4 + x + 1 does not have

either a fll'st or a second order factor. This means it cannot have a third order factor either. Hence

xS+x4 +x2 +1=(x+ lXx4 +x+ I)

Try dividing x7 + I by x + 1

x6 +1

x6 +%5

x5 + I

xS +x4

%4 +1

x4 +x3

x3 + 1

x3 +%2

%2 +1

x2 +%

x+ 1

x+l
o
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Now try dividing (X6 + xS + X
4 + X3 + X2 + x + 1) by (x +1). It does ~ot dividc. So try dividing by

(x2 +1). It docs not divide. Try dividing by (x2 +x+1). It does not dividc. Ncxt try dividing by

(x3 + I). It docs not dividc cithcr. Now try dividing by (x 3 +x+ 1). It divides. Wc fmd

(x6 +xS +x4 +x3 +x2 +x+ I) =(x3 +x+ IXx3 +x2 +1)

Since (x 3 +x2 + 1) is not divisible by x or x +1(thc only two first-ordcr primc factors), it must bc a

third-ordcr prime factor. Hencc

x7 +1- (x + lXx2 +x+ lXx2 +x2 + 1)

16.3-6 For a single error correcting (7. 4) cyclic code with a generator polynomial

g(x) 0: x3 +x2 +1
k:!:4 n=7

X k- 1 g(x) ~

xk- 2 g(x)

g(x)
Hence

x3 g(x)

0: x
2

g(x) =
x g(x)

g(x)

x6 +xS +x3

x S +x4 +x2

x4 +x3 +x

x3 +x2 + 1

[

I 101000]
0110100

G'=
0011010

0001101

Each codc word is found by matrix multiplication c. dG'

co:[OOOO] [:i::r;:]= 0000000

0001101

c=[OOOl] [E::!;:]= 0,001101

0001101 .
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The remaining codes are found in a similar manner. See table below.

d
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
111 1

C

0000000
0001101
0011010
0010111
0110100
0111001
0101110
0100001
1101000
1100101
1110010
1111111
1011100
1010001
1000110
1001011

The desired fonn is

1000· .. Ohll ~I ~I ... ~

o)0 0 . . . 0 hl2 hn h32 . . . ~

o0 1 0 . . . 0 h13 ~3 h33 . . . ~

G'= .

pO 0 0 . . . l hl/e ~k h)k . . . h",.
l~ . ;.

(hk) (k'xm)

The code is found by using c == dG

Proceeding with matrix multiplication, and noting that

o+0 • 0, 0+ I =I +0 == I, I + I ... 0 and 0)( 0 == 0, 0 )( 1... 1)( 0 • 0, I )( 1= 1

we get

[

1000110]
0100011

CIS == [I I 1 IJ 0010 t 11 =[II 111 II)

0001101

c14 =[11 1 0] G = [1 I I 00 I 0]

and so on.
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d
1111
11 10
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

1111111
1110010
1101000
1100101
1011100
1010001
1001011
1000110
0111001
0110100
0101110
0100011
0011010
0010111
0001101
0000000

These results agree with those ofTable 16.5

16.3-8 (a)

[

101 1000]
0101100

G'=
0010110

0001011

(b) The code is found by matrix multiplication. c=dG'

In general g(x) =glx,,-k + g2x ,,-k-1 +"'gll-hl

For this case gl =I, g2 = I, 83 = 0, g4 =1

Since hlk =g2' ~k = g3' h]k = g4' the fowth row is immediately found. Thus, so far we have

Next, to get row 3, use row 4 with one left shift.

[0011010]
0001101

The 1 is eliminated by adding row 4 to row 3.

[0010111]
0001101

Next for row 2, use row 3 with I left shift.
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[

0101110]
0010111

0001101

The 1 is eliminated by adding row 4 to row 2.

[

0100011]
0010111

0001101

Next for row 1, use row 2 with 1 left shift.

[

1000110]
0100011
0010111

0001101

'Ibis is the desired fonn.

c
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1 J J 0
1 1 1 1

d
0000000
0001011
0010110
0011101
0101100
0100111
0111010
0110001
1011000
1010011
1001110
1000101
1110100
1111111
1100010
1101001

(c) All code words are at a minimum diSIIDce of3 units. Hence this is a single error correcting code.

16.3-9 g(x) =x3 + X+ 1. Hence row 4 is 000 I 0 I 1.

G'.[:!; ~:;:]
0001011

Row 4 is ok.
Row 3 is left shift of row 4.
For row 2, left shift row 3.
And add row I to obtain row 2.
For row I, left shift row 2.
And add row I to obtain row I.

0001011
0010110
0101100
0100111
1001110
1000101
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[

1000101]
0100111

G=
00101JO

OOOJOIJ

16.4-1 The burst (of length 5) detection ability is obvious. The single error correcting ability can be demonstrated
as follows. If in any segment of b digits a single error occurs, it will violate the parity in that segment
Hence we locate the segment where the error exists. This error will also cause parity violation in the
augmented segment. By checking which bit in the augmented segment vioJates the parity, we can locate
the wrong bit position exactly.

16.5-1 The code can correct any 3 bursts of length 10 or less. It can also correet any 3 random errors in each code
word.

16.7-1 PEII =kQ(J2E;b/~) =12Q(J2 x 9.12) =9.825 x 10-6

P£c =WHJ2~. Jr =WXQ(J9516s1j' •_i12 _10--"

To achieve a value 9.872 x JO-9 for PEN' we need new vaJue Eb/~ say Eb/v'J. Then

9.872 x 10-
9 =k~J2~b )= 12~i2~b )

Hence

~~2~b ) = 0.8227 x 10-
9

and

J2£;, =6.03 => Eb =18.18
.....'J ..AI

This means Eb/~ must be increased from 9.12 to 18. J8 (nearJy doubled).
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