File Organization

Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan
See for conditions on re-use

©Silberschatz, Korth and Sudarshan

File Organization

m File: Afile is logically a sequence of records, where

B arecord is a sequence of fields;

m the file header contains information about the file.

m Usually, a relational table is mapped to a file and a tuple
to a record.

m A DBMS has the choice to
B Use the file system of the operating system (reuse code)

B Manage disk space on its own (OS independent, better
optimization, e.g., Oracle)

B Two approaches to represent files (or records) on disk
blocks:

m Fixed length records

m Variable length records

©Silberschatz, Korth and Sudarshan

Fixed-Length Records

B Suppose we have a table that has the following organization:

type deposit =record

branch-name : char(22); 22
account-number : char(10); 10 @
balance : real,; 08

End

B Assumptions: If each character occupies 1 byte and a real occupies 8
bytes, then this record occupies 40 bytes. If the first record occupies the

first 40 bytes and the second record occupies the second 40 bytes.

©Silberschatz, Korth and Sudarshan

Fixed-Length Records

Problems with this approach are:

m Difficult to delete a record, because there is no way to identify deleted

record. How It can be used for another record ?

m If fix the size then it may possible some records will cross block
boundaries and it would require two block access to read or write such a

record.

©Silberschatz, Korth and Sudarshan

Fixed-Length Records

m Store record i starting from byte n # (i - 1), where n is
the size of each record.

m Record access is simple but records may cross blocks

B Deletion of record i/ is more complicated. Several
alternatives exist:

m Moverecordsi+1,..., n Perryridge
toi, ..., n-=-1 Round Hill
m Move record n toi ianus
Downtown
m Do not move records, but Redwood

link all free records on a Perryridge

free list - Brighton
Downtown

Perryridge

©Silberschatz, Korth and Sudarshan

Fixed-Length Records

record 0
record 1
record 2
record 3
record 4
record 5
record 6
record 7

record 8

Record 2 Deleted and All Records

A-102 | Perryridge | 400
A-305 | Round Hill | 350
A-215 | Mianus 700
A-101 | Downtown | 500
A-222 | Redwood | 700
A-201 | Perryridge | 900
A-217 | Brighton 750
A-110 | Downtown | 600
A-218 | Perryridge | 700

Moved
record 0 | A-102 | Perryridge | 400
record 1 A-305 | Round Hill | 350
record3 | A-101 | Downtown | 500
record4 | A-222 | Redwood | 700
record 5 | A-201 | Perryridge | 900
record 6 | A-217 | Brighton 790
record 7 A-110 | Downtown | 600
record 8 | A-218 | Perryridge | 700

©Silberschatz, Korth and Sudarshan

Fixed-Length Records

record 0 | A-102 | Perryridge | 400
record 1 A-305 | Round Hill | 350
record 2 A-215 | Mianus 700
record 3 A-101 | Downtown | 500
record 4 A-222 | Redwood 700
record 5 A-201 | Perryridge | 900 Record 2 deleted and Final Record
record 6 | A-217 | Brighton 750 Moved

record 7 | A-110 | Downtown | 600 || [record 0 | A-102 | Perryridge | 400
record 8 A-218 | Perryridge | 700 || frecord1 | A-305 | Round Hill | 350

record 8 | A-218 | Perryridge | 700
record3 | A-101 | Downtown | 500
record4 | A-222 | Redwood | 700
record5 | A-201 | Perryridge | 900
record 6 | A-217 | Brighton 750
record7 | A-110 | Downtown | 600

©Silberschatz, Korth and Sudarshan

Fixed-Length Records

B Free list

B Store the address of the first deleted record in the
file header.

m Use this first record to store the address of the
second deleted record, and so on

® Note the additional
field to store pointers! : Perryridge

m More space efficient , —
representation is possible Downtown

m Hint: No pointers are stored : Perryridge
in records that contain data.

Downtown

Perryridge

©Silberschatz, Korth and Sudarshan

Variable-Length Records

m Variable-length records arise in database systems in several ways:
Storage of multiple record types in a file.
Record types that allow variable lengths for one or more fields.

Record types that allow repeating fields (used in some older data

models).

m Different methods to represent variable-length records
Byte string representation
Slotted page structure

Fixed-length representation

©Silberschatz, Korth and Sudarshan

Variable-Length Records

B Example: Bank application with an account relation,
where one variable-length record is used for each
branch name and all the account information for that
branch.

Type account-1list =
record
branche-name: char(22);
account-info: array[l..n] of
record
account-number: char(1l0);
balance: real;
end
end

©Silberschatz, Korth and Sudarshan

Variable-Length Records

m Byte string representation

» Attach an end-of-record (*) control character to the end of each record

» Difficulty with deletion and growth (how to reuse deleted space?)

» No space, in general, for a record to grow

Q1 = W N = O

Perryridge | A-102 | 400 | A-201 | 900 | A-218 | 700 1
Round Hill | A-305 | 350 1

Mianus A-215 | 700 1

Downtown | A-101 | 500 | A-110 | 600 1

Redwood A-222 | 700 1

Brighton A-217 | 750 1

©Silberschatz, Korth and Sudarshan

Variable-Length Records

m Slotted page structure

m S|lotted page header contains:
m number of record entries
B end of free space in the block

m |location and size of each record

m Records can be moved around in a page to keep them
contiguous with no empty space between them; entry in the
header must be updated.

m Pointers should not point directly to record — instead they
should point to the entry for the record in header.
Block Header Records

4 Entrieq

©Silberschatz, Korth and Sudarshan

Variable-Length Records

m Use one or more fixed length records:
reserved space
pointers

m Reserved space — can use fixed-length records of a known maximum length;

unused space in shorter records filled with a null or end-of-record symbol.

® Disadvantage: useful when most of records are of length near to maximum

otherwise wastage of space

0 | Remmricee oA I O = U] 0 s 700

1 | Round Hill | A-305 | 350 [1 1 1
Mianus A-215 | 700 I | i L
3 | Downtown | A-101 | 500 | A-110 | 600 1 |
Redwood A-222 | 700 L [| L

5 | Brighton Al [750 1 1 Il It

©Silberschatz, Korth and Sudarshan

Variable-Length Records

m Pointer method

A variable-length record is represented by a list of fixed-length records,

chained together via pointers.

Can be used even if the maximum record length is not known

cC N O O b= W N - O

Perryridge A-102 400
Round Hill A-305 350
Mianus A-215 700
Downtown A-101 500
Redwood A-222 700
A-201 900
Brighton A-217 750
A-110 600
A-218 700

©Silberschatz, Korth and Sudarshan

Variable-Length Records

B Pointer method

Disadvantage to pointer structure; space is wasted in all records except

the first in a chain.

0 Perryridge A-102 400 =

1 Round Hill A-305 350

2 Mianus A-215 700

3 Downtown A-101 500 ~

4 Redwood A-222 700

5(A-201 900 _
Wastage |6] Brighton A-217 | 750
of space |7 A-110 | 600 N

s A218 | 700 _L__L

©Silberschatz, Korth and Sudarshan

Variable-Length Records

B Pointer method

Disadvantage to pointer structure; space is wasted in all records except the first in a chain.
U Solution is to allow two kinds of block in file:
Anchor block — contains the first records of chain

Overflow block — contains records other than those that are the first records

of chairs. alllchm‘ Perryridge | A-102 | 400 5
block R and Hill | A305 | 350
Mianus A-215 700

Downtown | A-101 500 -
Redwood A-222 700
Brighton A-217 750

loverflow A201 | 900 B
block A-218 700 _)
A-110 | 600 i

I —
©Silberschatz, Korth and Sudarshan

Organization of Records in Files

Heap — a record can be placed anywhere in the file where there is space; there

IS no ordering in the file.

Sequential — store records in sequential order, based on the value of the

search key of each record

Hashing — a hash function computed on some attribute of each record; the
result specifies in which block of the file the record should be placed. Records

of each relation may be stored in a separate file.

In a clustering file organization records of several different relations can be

stored in the same file

Motivation: store related records on the same block to minimize 1/0O

©Silberschatz, Korth and Sudarshan

Sequential File Organization

m Suitable for applications that require sequential processing of the entire file

®m The records in the file are ordered by a search-key

m Example: account (account-number, branch-name,

balance)

A-217 | Brighton 750 -
A-101 | Downtown | 500 -
A-110 | Downtown | 600 =
A-215 | Mianus 700 -
A-102 | Perryridge | 400 —~
A-201 | Perryridge | 900 |
A-218 | Perryridge | 700 i
A-222 | Redwood 700 B
A-305 | Round Hill | 350 |

J\J\}\}\)\J\N\J

©Silberschatz, Korth and Sudarshan

Sequential File Organization (Cont.)

® Deletion — use pointer chains

® Insertion —locate the position where the record is to be inserted
if there is free space insert there
if no free space, insert the record in an overflow block
In either case, pointer chain must be updated

® Need to reorganize the file from time to time to restore sequential order

A-217 | Brighton 750 —
A-101 | Downtown | 500 —
A-110 | Downtown | 600 —
A-215 | Mianus 700 —
A-102 | Perryridge | 400 —
A-201 | Perryridge | 900 |
A-218 | Perryridge | 700 i
A-222 | Redwood 700 _
A-305 | Round Hill | 350

INNNNFNNN

A-888 North Town | 800]

©Silberschatz, Korth and Sudarshan

Clustering File Organization

Store several relations in one file using a multitable clustering file organization.

(instead of each relation in a separate file)

customer_name | account_number
Hayes A-102
Hayes A-220
Hayes A-503
Turner A-305

customer_name

customer _street

customer_city

Hayes

Main

Brooklyn

Turner

Putham

Stamford

©Silberschatz, Korth and Sudarshan

Multitable Clustering File Organization (cont.)

Multitable clustering organization of customer and depositor:

Hayes [Main Brooklyn
Hayes | A-102
Hayes | A-220
Hayes | A-503
Turner [Putnam | Stamford
Turner | A-305

good for queries involving depositor X customer, and for queries involving one

single customer and his accounts
bad for queries involving only customer
results in variable size records

Can add pointer chains to link records of a particular relation

©Silberschatz, Korth and Sudarshan

Data Dictionary Storage

Data dictionary (also called system catalog) stores metadata; that is, data

about data, such as

® [nformation about relations
names of relations
names and types of attributes of each relation
names and definitions of views
integrity constraints
User and accounting information, including passwords
Statistical and descriptive data
number of tuples in each relation
®m Physical file organization information
How relation is stored (sequential/hash/...)
Physical location of relation
® [nformation about indices

©Silberschatz, Korth and Sudarshan

Data Dictionary Storage (Cont.)

m Catalog structure
Relational representation on disk

specialized data structures designed for efficient access, in memory

®m A possible catalog representation:

Relation_metadata = (relation_name, number_of attributes, storage organization,

location)

Attribute_metadata = (attribute _name, relation _name, domain_type, position, length)

User_metadata = (user_name, encrypted password, group)

Index_metadata = (index_name, relation _name, index_type, index_attributes)

View_metadata = (view _name, definition)

©Silberschatz, Korth and Sudarshan

