
1

RDBMS-Day3

SQL
– Basic DDL statements
– DML statements
– Aggregate functions

2

2

• SQL is used to make a request to retrieve data from a Database.

• The DBMS processes the SQL request, retrieves the requested data from the
Database, and returns it.

• This process of requesting data from a Database and receiving back the
results is called a Database Query and hence the name Structured Query
Language.

SQL

3

3

SQL

• SQL is a language that all commercial RDBMS implementations understand.

• SQL is a non-procedural language

• We would be discussing SQL with respect to oracle syntax

You can’t write programs like the ones you would have done using C language
You can only write questions in English like language called queries which will fetch some data rows
from the database.

4

4

Structured Query Language (SQL)

5

5

• 1979 Oracle Corporation introduces the first commercial RDBMS

• 1982 ANSI (American National Standards Institute) forms SQL Standards Committee

• 1983 IBM (International Business Machine) announces DB2 (a Database)

• 1986 ANSI (American National Standards Institute) SQL1 standard is approved

• 1987 ISO (International Organization for Standardization) SQL1 standard is approved

• 1992 ANSI (American National Standards Institute) SQL2 standard is approved

• 2000 Microsoft Corporation introduces SQL Server 2000, aimed at enterprise
applications

• 2004 SQL: 2003 standard is published

Structured Query Language (SQL)

6

6

Statements

• DDL (Data Definition Language)
– Create
– Alter
– Drop
– Truncate

• DML (Data Manipulation Language)
– Insert
– Update
– Delete
– Select

• DCL (Data Control Language)
– Grant
– Revoke
– Commit
– Rollback

SQL has three flavours of statements. The DDL, DML and DCL.
DDL is Data Definition Language statements. Some examples:
CREATE - to create objects in the database
ALTER - alters the structure of the database
DROP - delete objects from the database
TRUNCATE - remove all records from a table, including all spaces allocated for the records are
removed
COMMENT - add comments to the data dictionary
GRANT - gives user's access privileges to database
REVOKE - withdraw access privileges given with the GRANT command
DML is Data Manipulation Language statements. Some examples:
SELECT - retrieve data from the a database
INSERT - insert data into a table
UPDATE - updates existing data within a table
DELETE - deletes all records from a table, the space for the records remain
CALL - call a PL/SQL or Java subprogram
EXPLAIN PLAN - explain access path to data
LOCK TABLE - control concurrency
DCL is Data Control Language statements. Some examples:
COMMIT - save work done
SAVEPOINT - identify a point in a transaction to which you can later roll back
ROLLBACK - restore database to original since the last COMMIT
SET TRANSACTION - Change transaction options like what rollback segment to use

7

7

Data types

• Number
• Char
• Varchar2
• Long
• date

SQL supports various data types

Integers
Decimal numbers--- NUMBER, INTEGER .

Number is an oracle data type. Integer is an ANSI data type. Integer is equivalent of NUMBER(38)

The syntax for NUMBER is NUMBER(P,S) p is the precision and s is the scale. P can range from 1
to 38 and s from -84 to 127

Floating point numbers---- FLOAT

Fixed length character strings---- CHAR (len)
Fixed length character data of length len bytes. This should be used for fixed length data.

Variable length character strings --- Varchar2(len)
Variable length character string having maximum length len bytes. We must specify the size

Dates-----DATE

8

8

NULL

• Missing/unknown/inapplicable data represented as a null value
• NULL is not a data value. It is just an indicator that the value is unknown

9

9

Operators

• Arithmetic operators like +, -, *, /

• Logical operators: AND, OR, NOT

• Relational operators: =, <=, >=, < >, < , >

The Arithmetic operators are used to calculate something like given in the example below:
Select * from employee where sal * 1.1 > 1000 ;

The logical operators are used to combine conditions like:

Select * from employee where (sal > 1000 AND age > 25);

The above two examples also illustrate use of relational operators

10

SQL-Data Definition Language

11

11

Types Of Constraints

• Column Level

• Table

12

12

Types Of Constraints

• Primary Key Constraint

• Foreign Key Constraint

• Unique Constraint

• Check Constraint

13

13

SQL - CREATE TABLE

Syntax:

CREATE TABLE tablename

(

column_name data_ type constraints, …

)

Used to create a table by defining its structure, the data type and name of the various columns, the
relationships with columns of other tables etc.

14

14

Create Table (Contd…)

• Implementing NOT NULL and Primary Key

EXAMPLE :
CREATE TABLE Customer_Details(

Cust_ID Number(5) CONSTRAINT Nnull1 NOT NULL,
Cust_Last_Name VarChar2(20) CONSTRAINT Nnull2 NOT NULL,
Cust_Mid_Name VarChar2(4),
Cust_First_Name VarChar2(20),
Account_No Number(5) CONSTRAINT Pkey1 PRIMARY KEY,
Account_Type VarChar2(10) CONSTRAINT Nnull3 NOT NULL,
Bank_Branch VarChar2(25) CONSTRAINT Nnull4 NOT NULL,
Cust_Email VarChar2(30)

);

15

15

Create Table (Contd…)

• Implementing Composite Primary Key

EXAMPLE :

CREATE TABLE Customer_Details(
Cust_ID Number(5) CONSTRAINT Nnull7 NOT NULL,
Cust_Last_Name VarChar2(20) CONSTRAINT Nnull8 NOT NULL,
Cust_Mid_Name VarChar2(4),
Cust_First_Name VarChar2(20),
Account_No Number(5) CONSTRAINT Nnull9 NOT NULL,
Account_Type VarChar2(10) CONSTRAINT Nnull10 NOT NULL,
Bank_Branch VarChar2(25) CONSTRAINT Nnull11 NOT NULL,
Cust_Email VarChar2(30),

CONSTRAINT PKey3 PRIMARY KEY(Cust_ID,Account_No)
);

16

16

Create Table (Contd…)
• Implementation of Unique Constraint

Create Table UnqTable(
ECode Number(6) Constraint PK11 Primary Key,
EName Varchar2(25) Constraint NNull18 NOT NULL,
EEmail Varchar2(25) Constraint Unq1 Unique
);

17

17

Create Table (Contd…)

• Implementation of Primary Key and Foreign Key Constraints

CREATE TABLE EMPLOYEE_MANAGER(
Employee_ID Number(6) CONSTRAINT Pkey2 PRIMARY KEY,
Employee_Last_Name VarChar2(25),
Employee_Mid_Name VarChar2(5),
Employee_First_Name VarChar2(25),
Employee_Email VarChar2(35),
Department VarChar2(10),
Grade Number(2),
MANAGER_ID Number(6) CONSTRAINT Fkey2

REFERENCES EMPLOYEE_MANAGER(Employee_ID)
);

18

18

Create Table (Contd…)

• Implementation of Check Constraint

EXAMPLE :
CREATE TABLE EMPLOYEE(
EmpNo NUMBER(5) CONSTRAINT PKey4 Primary Key,
EmpName Varchar(25) NOT NULL,
EmpSalary Number(7) Constraint chk Check (EmpSalary > 0 and EmpSalary <

1000000)
)

19

19

Create Table (Contd…)

• Implementation of Default

CREATE TABLE TABDEF(
Ecode Number(4) Not Null,
Ename Varchar2(25) Not Null,
ECity char(10) DEFAULT ‘Mysore’
)

20

20

ALTER TABLE Customer_Details
ADD Contact_Phone Char(10);

ALTER TABLE Customer_Details
DROP (Contact_Phone);

SQL - ALTER TABLE

• Add/Drop Column

Syntax:

ALTER TABLE tablename (ADD/MODIFY/DROP column_name)

ALTER TABLE Customer_Details

MODIFY Contact_Phone Char(12);

Used to modify the structure of a table by adding and removing columns

21

21

ALTER TABLE Customer_Details
ADD CONSTRAINT Pkey1 PRIMARY KEY (Account_No);

ALTER TABLE Customer_Details

DROP PRIMARY KEY;

Or

ALTER TABLE Customer_Details

DROP CONSTRAINT Pkey1;

SQL - ALTER TABLE

• Add/Drop Primary key

ALTER TABLE Customer_Details

ADD CONSTRAINT Pkey2 PRIMARY KEY (Account_No, Cust_ID);

22

22

ALTER TABLE Customer_Transaction
ADD CONSTRAINT Fkey1 FOREIGN KEY (Account_No)

REFERENCES Customer_Details (Account_No);

ALTER TABLE Customer_Transaction

DROP CONSTRAINT Fkey1

SQL - ALTER TABLE

• Add/Drop Foreign key

23

23

DROP TABLE UnqTable;

SQL - DROP TABLE

• DROP TABLE
– Deletes table structure
– Cannot be recovered
– Use with caution

24

24

Truncate Table

• Deleting All Rows of a table

TRUNCATE TABLE Customer_Details

25

25

Index
• Indexing involves forming a two dimensional matrix completely

independent of the table on which index is created.

• Here one column will hold the sorted data of the column which is been
indexed

• Another column called the address field identifies the location of the record
i.e. Row ID.

• Row Id indicates exactly where the record is stored in the table.

26

26

Index
• Syntax

• Index on a single column
CREATE UNIQUE INDEX Cust_Idx

ON Customer_Details (Cust_ID);

• Index on Multiple Column
CREATE UNIQUE INDEX ID_AccountNo_Idx

ON Customer_Details (Cust_ID, Account_No);

• Drop a Index
DROP INDEX ID_AccountNo_Idx;

27

27

Index

• Advantages of having an INDEX:
– Greatly speeds the execution of SQL statements with search conditions

that refer to the indexed column(s)
– It is most appropriate when retrieval of data from tables are more frequent

than inserts and updates

• Disadvantages of having an INDEX:
– It consumes additional disk space
– Additional Overhead on DML Statements

28

SQL-DML

Here we will discuss about commands using which data from the tables would be extracted and
updated in different ways

29

29

SQL - INSERT INTO

• Single-row insert with values for all Columns

INSERT INTO Customer_Details
VALUES (106, 'Costner', 'A.', 'Kevin', 3350, 'Savings', 'Indus Bank',

'Costner_Kevin@times.com')

Syntax: INSERT INTO tablename (Columnlist) VALUES (value list)

• Inserting one row, few columns at a time

INSERT INTO Customer_Details
(Cust_ID, Cust_Last_Name, Cust_Mid_Name, Cust_First_Name, Account_No,

Account_Type, Bank_Branch)
VALUES (107, 'Robert', 'B.', 'Dan', 3351, 'Savings', 'Indus Bank')

In the first format, we would pass values for all the columns in exactly the same order in which they
appear in the table

When we wish to insert values only for few selected columns. For e.g in a Customer table, we may
know only the Cust_Id, Cust_Last_Name, Cust_Mid_Name, Cust_First_Name, Account_No,
Account_Type and Bank_Branch but not the emailid. So, we may insert only values for Cust_Id,
Cust_Last_Name, Cust_Mid_Name, Cust_First_Name, Account_No, Account_Type and
Bank_Branch columns in this case. The value of the remaining column will be represented as NULL
by default.

30

30

SQL - INSERT INTO

• Inserting NULL Value into a Column

INSERT INTO Customer_Details
(Cust_ID, Cust_Last_Name, Cust_Mid_Name, Cust_First_Name, Account_No,

Account_Type, Bank_Branch)
VALUES (108, 'Robert', 'B.', 'Dan', 3352, 'Savings', 'Indus Bank')

Or

INSERT INTO Customer_Details
(Cust_ID, Cust_Last_Name, Cust_Mid_Name, Cust_First_Name, Account_No,

Account_Type, Bank_Branch,Cust_Email)
VALUES (108, 'Robert', 'B.', 'Dan', 3352, 'Savings', 'Indus Bank‘,NULL)

31

31

SQL - INSERT INTO

• Inserting Many rows from a Different Table

INSERT INTO OldCust_details
(Account_No, Transaction_Date,Total_Available_Balance_in_Dollars)
SELECT Account_No,Transaction_Date,Total_Available_Balance_in_Dollars

From Customer_Transaction
WHERE Total_Available_Balance_in_Dollars > 10000.00

32

32

Deleting All Rows

DELETE FROM Customer_Details

Deleting Specific Rows

DELETE

FROM Customer_Details

WHERE Cust_ID = 102

SQL - DELETE FROM

• With or without WHERE clause

Syntax: DELETE FROM tablename WHERE condition

33

33

Difference Between Delete and Truncate

TRUNCATE releases the memory
occupied by the records of the table

DELETE does not do so

DDL statementDML statement

Data cannot be recovered.Data can be recovered
TRUNCATEDELETE

34

34

Updating All Rows

UPDATE Customer_Fixed_Deposit

SET Rate_of_Interest_in_Percent = NULL;

Updating Particular rows

UPDATE Customer_Fixed_Deposit

SET Rate_of_Interest_in_Percent = 7.3

WHERE Amount_in_Dollars > 3000;

SQL - UPDATE

Syntax:

UPDATE tablename SET column_name =value [WHERE condition]

35

35

SQL - UPDATE

• Updating Multiple Columns

UPDATE Customer_Fixed_Deposit
SET Cust_Email = ‘Quails_Jack@rediffmail.com’ ,
Rate_of_Interest_in_Percent = 7.3

WHERE Cust_ID = 104

36

36

Retrieving All columns from a table

To select set of column names,

SELECT column1, column2,… FROM TableName

Example

SELECT *

FROM Customer_Details;

Or

SELECT Cust_ID, Cust_Last_Name, Cust_Mid_Name, Cust_First_Name,
Account_No, Account_Type, Bank_Branch, Cust_Email

FROM Customer_Details;

Examples:
Get the first name of all the customers
SELECTSELECT Cust_First_Name FROMFROM Customer_Details;

Get the first name and bank branch of all the customers
SELECTSELECT Cust_First_Name, Bank_Branch FROMFROM S

Get full details for all customers in Customer_Details table
SELECTSELECT * FROMFROM Customer_Details;

37

37

Retrieving Few Columns

SELECT Cust_ID, Account_No
FROM Customer_Details;

SELECT Account_No AS “Customer Account No.”,
Total_Available_Balance_in_Dollars AS “Total Balance”

FROM Customer_Transaction;

Implementing Customized Columns Names

38

38

SQL - ALL, DISTINCT

SELECT ALL Cust_Last_Name

FROM Customer_Details;

Or

SELECT Cust_Last_Name

FROM Customer_Details;

Get all Customers Name:

Get all distinct Customer Name

SELECT DISTINCT Cust_Last_Name

FROM Customer_Details;

Distinct will filter repetitive occurrence of a particular value

39

39

SELECT COL1,COL2,.........

FROM TABLE NAME

WHERE < SEARCH CONDITION>

Retrieving a subset of rows

• For retrieval of rows based on some condition, the syntax is

40

40

Retrieving a subset of rows (Working of WHERE Clause)

Problem Statement: To select rows which have 102 in the Manager column.

Row selection with the WHERE clause

41

41

SELECT Account_No, Total_Available_Balance_in_Dollars

FROM Customer_Transaction

WHERE Total_Available_Balance_in_Dollars > 10000.00;

Relational operators = , < , > , <= , >= , != or < >

• List all customers with an account balance > $10000

Relational operators

SELECT Cust_ID, Account_No

FROM Customer_Details

WHERE Cust_First_Name = ‘Graham’;

• List the Cust_ID, Account_No of ‘Graham’

42

42

SELECT Account_No

FROM Customer_Transaction

WHERE Total_Available_Balance_in_Dollars >= 10000.00;

• List all Account_No where Total_Available_Balance_in_Dollars is atleast
$10000.00

Relational operators

43

43

SELECT Cust_ID, Cust_Last_Name

FROM Customer_Details

WHERE Account_Type = ‘Savings’ AND Bank_Branch = ‘Capital Bank’;

• List all Cust_ID, Cust_Last_Name where Account_type is ‘Savings’ and
Bank_Branch is ‘Capital Bank’.

Logical operators

SELECT Cust_ID, Cust_Last_Name

FROM Customer_Details

WHERE NOT Account_Type = ‘Savings’ AND

NOT Bank_Branch = ‘Capital Bank’;

• List all Cust_ID, Cust_Last_Name where neither Account_type is
‘Savings’ and nor Bank_Branch is ‘Capital Bank’

44

44

SELECT Cust_ID, Cust_Last_Name

FROM Customer_Details

WHERE Account_Type = ‘Savings’ OR Bank_Branch = ‘Capital Bank’;

• List all Cust_ID, Cust_Last_Name where either Account_type is ‘Savings’
or Bank_Branch is ‘Capital Bank’.

Logical operators

Logical operator: AND, OR, and NOT

45

45

List all Account_Nos with balance in the range $10000.00 to $20000.00.

SELECT Account_No

FROM Customer_Transaction

WHERE Total_Available_Balance_in_Dollars >= 10000.00

AND Total_Available_Balance_in_Dollars <= 20000.00;

Or

SELECT Account_No

FROM Customer_Transaction

WHERE Total_Available_Balance_in_Dollars

BETWEEN 10000.00 AND 20000.00;

Retrieval using BETWEEN

46

46

List all customers who have account in Capital Bank or Indus Bank.

SELECT Cust_ID

FROM Customer_Details

WHERE Bank_Branch = ‘Capital Bank’

OR Bank_Branch = ‘Indus Bank’;

Or

SELECT Cust_ID

FROM Customer_Details

WHERE Bank_Branch IN (‘Capital Bank’, ‘Indus Bank’);

Retrieval using IN

47

47

SELECT Cust_ID, Cust_Last_Name, Account_No

FROM Customer_Details

WHERE Bank_Branch LIKE ‘Ca%’;

List all Accounts where the Bank_Branch begins with a ‘C’ and has
‘a’ as the second character

SELECT Cust_ID, Cust_Last_Name, Account_No

FROM Customer_Details

WHERE Bank_Branch LIKE ‘_a%’;

Retrieval using LIKE

List all Accounts where the Bank_Branch column has ‘a’ as the
second character.

48

48

List employees who have not been assigned a Manager yet.

SELECT Employee_ID

FROM Employee_Manager

WHERE Manager_ID IS NULL;

SQL - Retrieval using IS NULL

List employees who have been assigned to some Manager.

SELECT Employee_ID

FROM Employee_Manager

WHERE Manager_ID IS NOT NULL;

49

49

SELECT Account_No, Total_Available_Balance_in_Dollars

FROM Customer_Transaction

ORDER BY Total_Available_Balance_in_Dollars;

• by default the order is ASCENDING

SQL - Sorting your results (ORDER BY)

List the customers account numbers and their account balances, in the
increasing order of the balance

50

50

List the customers and their account numbers in the decreasing order of the
account numbers.

SELECT Cust_Last_Name, Cust_First_Name, Account_No

FROM Customer_Details

ORDER BY 3 DESC;

Retrieval using ORDER BY

51

51

List the customers and their account numbers in the decreasing order of the
Customer Last Name and increasing order of account numbers.

SELECT Cust_Last_Name, Cust_First_Name, Account_No

FROM Customer_Details

ORDER BY Cust_Last_Name DESC, Account_No;

Or

SELECT Cust_Last_Name, Cust_First_Name, Account_No

FROM Customer_Details

ORDER BY 1 DESC, 3;

Retrieval using ORDER BY

52

Aggregate Functions

53

53

SUM() , AVG() , MAX() , MIN(), COUNT()

SQL - Aggregate functions

• Used when information you want to extract from a table has to do with the
data in the entire table taken as a set.

• Aggregate functions are used in place of column names in the SELECT
statement

• The aggregate functions in sql are :

54

54

List the minimum account balance.

SELECT MIN (Total_Available_Balance_in_Dollars)

FROM Customer_Transaction;

Aggregate function - MIN

• Returns the smallest value that occurs in the specified column
• Column need not be numeric type

55

55

List the maximum account balance.

SELECT MAX (Total_Available_Balance_in_Dollars)

FROM Customer_Transaction;

Aggregate function - MAX

• Returns the largest value that occurs in the specified column
• Column need not be numeric type

• Example:

56

56

Example:

List the average account balance of customers.

SELECT AVG (Total_Available_Balance_in_Dollars)

FROM Customer_Transaction;

Aggregate function - AVG

• Returns the average of all the values in the specified column
• Column must be numeric data type

57

57

List the minimum and Sum of all account balance.

SELECT MIN (Total_Available_Balance_in_Dollars),

SUM (Total_Available_Balance_in_Dollars)

FROM Customer_Transaction;

Aggregate function - SUM

• Adds up the values in the specified column
• Column must be numeric data type
• Value of the sum must be within the range of that data type
• Example:

58

58

List total number of Employees.

SELECT COUNT (*)

FROM Employee_Manager;

Aggregate function - COUNT

• Returns the number of rows in the table

List total number of Employees who have been assigned a Manager.

SELECTSELECT COUNTCOUNT ((Manager_IDManager_ID))

FROMFROM Employee_ManagerEmployee_Manager;;

Count(*) = No of rows
Count(ColumnName) = No. of rows that do not have NULL Value

59

59

List total number of account holders in the ‘Capital Bank’ Branch.

SELECT COUNT (*)

FROM Customer_Details

WHERE Bank_Branch = ‘Capital Bank’;

Aggregate function - COUNT

List total number of unique Customer Last Names.

SELECT COUNT (DISTINCT SELECT COUNT (DISTINCT Cust_Last_NameCust_Last_Name))

FROM FROM Customer_DetailsCustomer_Details;;

Count(*) = No of rows
Count(ColumnName) = No. of rows that do not have NULL Value

60

60

Summary of basic DDL and DML

• Create , Alter and Drop are the DDL commands

• Update, Insert into, Delete from are the basic DML commands that add or
remove data from tables

• Select statement in its various flavours is used to retrieve information from the
table

• Aggregate functions work on all the rows of the table taken as a group (based
on some condition optionally)

61

61

Thank You!

