
1

RDBMS- Day 4
• Grouped results
• Relational algebra
• Joins
• Sub queries

In today’s session we will discuss about the concept of sub queries.

2

Grouped results

3

ER/CORP/CRS/DB07/003

Version No: 2.0
3Copyright © 2004,

Infosys Technologies Ltd

SQL - Using GROUP BY

• Related rows can be grouped together by GROUP BY clause by
specifying a column as a grouping column.

• GROUP BY is associated with an aggregate function

• To retrieve the total loan-amount of all loans taken by each Customer.

SELECT Cust_ID, SUM(Amount_in_Dollars)

FROM Customer_Loan

GROUP BY Cust_ID;

In the output table all the rows with an identical value in the grouping column will be grouped
together.

4

ER/CORP/CRS/DB07/003

Version No: 2.0
4Copyright © 2004,

Infosys Technologies Ltd

SQL – Group By

5

ER/CORP/CRS/DB07/003

Version No: 2.0
5Copyright © 2004,

Infosys Technologies Ltd

SQL – Group BY
• To retrieve Number of Employees in each Department

SELECT Department, COUNT (Employee_ID)

FROM Employee_Manager

GROUP BY Department

6

ER/CORP/CRS/DB07/003

Version No: 2.0
6Copyright © 2004,

Infosys Technologies Ltd

Example:

Invalid SQL statement

SELECT Department, Manager_ID, COUNT(Employee_ID)

FROM Employee_Manager

GROUP BY Manager_ID;

Valid SQL Statement

SELECT Department, Manager_ID, COUNT(Employee_ID)

FROM Employee_Manager

GROUP BY Manager_ID, Department;

Retrieval using GROUP BY

7

ER/CORP/CRS/DB07/003

Version No: 2.0
7Copyright © 2004,

Infosys Technologies Ltd

SQL – Group By

8

ER/CORP/CRS/DB07/003

Version No: 2.0
8Copyright © 2004,

Infosys Technologies Ltd

List all customers who are having loans greater than 4000

Select Cust_ID,SUM(Amount_in_Dollars)

From Customer_Loan

Group By Cust_ID Having SUM(Amount_in_Dollars) > 4000.00;

Retrieval using HAVING • Used to specify condition on group

9

ER/CORP/CRS/DB07/003

Version No: 2.0
9Copyright © 2004,

Infosys Technologies Ltd

Can you identify any error…?

Select Cust_ID,SUM(Amount_in_Dollars)
From Customer_Loan

Group By Cust_ID Having LOAN_NO > 4000.00;

Ans: The Having condition has to be based on some column that
appears in the select list

10

Relational algebra operations

11

SET operations

12

ER/CORP/CRS/DB07/003

Version No: 2.0
12Copyright © 2004,

Infosys Technologies Ltd

List all the customer who has either Fixed Deposit or Loan or
Both

Retrieval using UNION

The UNION operation
• Combines the rows from two sets of query results.
• By default, the UNION operation eliminates duplicate rows as part of its
processing.

SELECT Cust_ID

FROM Customer_Fixed_Deposit

UNION

SELECT Cust_ID

FROM Customer_Loan;

Customer_Fixed
_Deposit

Customer_
Loan

The results of two independent SELECT statements can be worked with using the SET operation –
UNION. By default, UNION returns only distinct values. Union is like an “OR” operation. If the tuple
occurs in relation 1 or relation 2, it is selected. Set theoretic notation indicates union as indicated in
the slide

13

ER/CORP/CRS/DB07/003

Version No: 2.0
13Copyright © 2004,

Infosys Technologies Ltd

Union (Contd…)

14

ER/CORP/CRS/DB07/003

Version No: 2.0
14Copyright © 2004,

Infosys Technologies Ltd

Union All
SELECT Cust_ID FROM Customer_Fixed_Deposit

UNION ALL
SELECT Cust_ID FROM Customer_Loan;

15

ER/CORP/CRS/DB07/003

Version No: 2.0
15Copyright © 2004,

Infosys Technologies Ltd

Union - Restrictions

• The SELECT statements must contain the same number of columns

• Data type
– Each column in the first table must be the same as the data type of the

corresponding column in the second table.
– Data width and column name can differ

• Neither of the two tables can be sorted with the ORDER BY clause.
– Combined query results can be sorted

16

ER/CORP/CRS/DB07/003

Version No: 2.0
16Copyright © 2004,

Infosys Technologies Ltd

List all the customer who have both Fixed Deposit and Loan.

Retrieval using INTERSECT

SELECT Cust_ID

FROM Customer_Fixed_Deposit

INTERSECT

SELECT Cust_ID

FROM Customer_Loan;

Customer_Fixed
_Deposit

Customer_Loan

An intersection is an AND operation. It retrieves those tuples which are present in both relation

17

ER/CORP/CRS/DB07/003

Version No: 2.0
17Copyright © 2004,

Infosys Technologies Ltd

Minus

• Get All the Customer who have not taken loan

Select Cust_ID

from Customer_details

MINUS

Select Cust_Id

from Customer_loan;

Customer_Details Customer_Loan

This is the difference operation. It retrieves tuples which are present in relation 1 but not in relation 2.

18

ER/CORP/CRS/DB07/003

Version No: 2.0
18Copyright © 2004,

Infosys Technologies Ltd

Other RA operations

• Restriction

• Projection

• Join

19

ER/CORP/CRS/DB07/003

Version No: 2.0
19Copyright © 2004,

Infosys Technologies Ltd

Restriction

• Restricts the rows that can be chosen from a relation using a WHERE clause

• Takes a horizontal subset of values from the original relation

– Example: select * from employee where salary > 10000;

This will retrieve only those rows of the table which satisfy the condition in the where clause

20

ER/CORP/CRS/DB07/003

Version No: 2.0
20Copyright © 2004,

Infosys Technologies Ltd

Projection

• Projection is projecting a set of attributes of a relation so that rows of values
corresponding to those columns will figure in the output

• This takes a vertical subset of the relation

• Example: select empid, name, salary from employee;

21

Joins

22

ER/CORP/CRS/DB07/003

Version No: 2.0
22Copyright © 2004,

Infosys Technologies Ltd

JOINS

• Cartesian Product
• Inner join
• Equi join
• Outer join

– Left-outer join
– Right-outer join

• Self join

In relational databases, data is spread over multiple tables. Sometimes we may want data from two
or more tables. A join is an operation which combines results from two or more tables.

23

ER/CORP/CRS/DB07/003

Version No: 2.0
23Copyright © 2004,

Infosys Technologies Ltd

Cartesian Product Or Cross Join
• Returns All rows from first table, Each row from the first table is combined

with all rows from the second table
Example
Select * from Table1,Table2;

24

ER/CORP/CRS/DB07/003

Version No: 2.0
24Copyright © 2004,

Infosys Technologies Ltd

Inner Joins

• Common type of join

• An inner join between two (or more) tables is the Cartesian product that
satisfies the join condition in the WHERE clause

25

ER/CORP/CRS/DB07/003

Version No: 2.0
25Copyright © 2004,

Infosys Technologies Ltd

Get all combinations of emp and cust information such that the emp and
cust are co-located.

SELECT Table1.Emp_ID, Table1.City, Table2.Cust_ID, Table2.City

FROM Table1, Table2

WHERE Table1.City = Table2.City;

Retrieval from Multiple tables-Equi join

Here the where clause is based on the equality condition “=“. Hence it is called equi join

26

ER/CORP/CRS/DB07/003

Version No: 2.0
26Copyright © 2004,

Infosys Technologies Ltd

Display the First and Last Name of Customer who have taken Loan

Select a.Cust_Id,b.Cust_First_Name,b.Cust_Last_Name

from Customer_loan a, customer_details b

where a.cust_id = b.cust_id;

Retrieval from Multiple tables- Equi join

If the where clause is based on a non quality condition (<). ?Hence, it is called non-equi join

27

ER/CORP/CRS/DB07/003

Version No: 2.0
27Copyright © 2004,

Infosys Technologies Ltd

Outer join

• Retrieve all rows that match the WHERE clause and also those that have a
NULL value in the column used for join.

The inner join takes into account only those non NULL rows from the tables involved. If you want the
result to include even those rows having a NULL for a particular row in the selected column, then go
for an outer join. The syntax for representing this is slightly different in each RDBMS product. What
follows in the next slide is the oracle style.

28

ER/CORP/CRS/DB07/003

Version No: 2.0
28Copyright © 2004,

Infosys Technologies Ltd

Left/Right-Outer join

• Left outer joins include all records from the first (left) of two tables,
A = B (+)

• Right outer joins include all records from the second (right) of two tables,

A (+) = B

29

ER/CORP/CRS/DB07/003

Version No: 2.0
29Copyright © 2004,

Infosys Technologies Ltd

Example of left-join

SELECT Table1.Emp_ID, Table1.City, Table2.Cust_ID, Table2.City

FROM Table1, Table2

WHERE Table1.City = Table2.City (+);

List all cities of Table1 if there is match in cities in Table2 & also unmatched
Cities from Table1

30

ER/CORP/CRS/DB07/003

Version No: 2.0
30Copyright © 2004,

Infosys Technologies Ltd

Example of Left Outer Join

• List all customer details and loan details if they have availed loans.

Select Customer_details.Cust_id,Cust_Last_name,Loan_no,Amount_in_dollars
from Customer_details,Customer_loan

where Customer_details.Cust_id = Customer_loan.Cust_id (+);

31

ER/CORP/CRS/DB07/003

Version No: 2.0
31Copyright © 2004,

Infosys Technologies Ltd

Example of right outer join

SELECT Table1.Emp_ID, Table1.City, Table2.Cust_ID, Table2.City
FROM Table1, Table2

WHERE Table1.City (+) = Table2.City;

The (+) symbol is next to the column which needs to be expanded to include null values also. In the
example above, there may be some customers who have not made any orders, so if we select their
names from the customers table (the second table based on int position in the query), the
corresponding order detail would be null. Even then such values have to be selected . That’s what is
indicated. A typical output would look like:

ORDER_NUM CUST_NAME
--------- ----------

5 radha
first corp
jcp inc.

32

ER/CORP/CRS/DB07/003

Version No: 2.0
32Copyright © 2004,

Infosys Technologies Ltd

To list all the Employees along with their Managers

Select

Emp.Employee_ID as “Employee ID”,

Emp.Employee_Last_Name as “Employee Last Name”,
Emp.Employee_first_Name as “Employee First Name”,

Emp.Manager_Id as “Manager ID”,

Manager.Employee_Last_Name as “Manager Last Name”,
Manager.Employee_first_Name as “Manager first Name”

From employee_Manager Emp , employee_Manager Manager

Where Emp.Manager_ID = Manager.Employee_ID;

Self join-Joining a table with itself

When you wish to join a table with itself based on some criteria, use the concept of synonyms. Treat
the table as two different tables by giving synonyms

33

ER/CORP/CRS/DB07/003

Version No: 2.0
33Copyright © 2004,

Infosys Technologies Ltd

Self Join (Contd…)

34

Independent subqueries

35

ER/CORP/CRS/DB07/003

Version No: 2.0
35Copyright © 2004,

Infosys Technologies Ltd

Independent sub-queries

• Inner query is independent of outer query.

• Inner query is executed first and the results are stored.

• Outer query then runs on the stored results.

These are queries where there are two parts to the query. We need to collect one type of information
based on which other set of information has to be retrieved from the table.

For e.g :
Select all sales reps who have a higher quota than sales rep 101.

We need to analyze this query and understand how to break it into sub problems

1. First we need to find out what is the quota of sales rep 101
2. Based on this info, we need to select sales reps who have a higher quota than this value

3. So, the inner query will find the quota of sales rep 101 and the outer query will extract sales reps
exceeding this quota value. The solution would look like:

SELECT Rep
FROM SalesReps
WHERE Quota >

SELECT Quota
FROM SalesReps
WHERE Empl_Num = 101;

36

ER/CORP/CRS/DB07/003

Version No: 2.0
36Copyright © 2004,

Infosys Technologies Ltd

To list the Cust_ID and Loan_No for all Customers who have taken a loan of
amount greater than the loan amount of Customer (Cust_ID = 104).

Select cust_ID, Loan_no

From Customer_Loan

Where amount_in_dollars >

(Select amount_in_dollars

From Customer_Loan

Where Cust_ID = 104);

Retrieval using SUB QUERIES

37

ER/CORP/CRS/DB07/003

Version No: 2.0
37Copyright © 2004,

Infosys Technologies Ltd

Sub Query (Contd…)

38

ER/CORP/CRS/DB07/003

Version No: 2.0
38Copyright © 2004,

Infosys Technologies Ltd

List customer names of all customers who have taken a loan > $3000.00.

SELECT Cust_Last_Name, Cust_Mid_Name, Cust_First_Name

FROM Customer_Details

WHERE Cust_ID

IN

(SELECT Cust_ID

FROM Customer_Loan

WHERE Amount_in_Dollars > 3000.00);

Retrieval using SUB QUERIES

39

ER/CORP/CRS/DB07/003

Version No: 2.0
39Copyright © 2004,

Infosys Technologies Ltd

List customer names of all customers who have the same Account_type as
Customer ‘Jones Simon’ .

SELECT Cust_Last_Name, Cust_Mid_Name, Cust_First_Name

FROM Customer_Details

WHERE Account_Type

=

(SELECT Account_Type

FROM Customer_Details

WHERE Cust_Last_Name = ‘Jones’

AND Cust_First_Name = ‘Simon’);

Retrieval using SUB QUERIES

40

ER/CORP/CRS/DB07/003

Version No: 2.0
40Copyright © 2004,

Infosys Technologies Ltd

List customer names of all customers who do not have a Fixed Deposit.

SELECT Cust_Last_Name, Cust_Mid_Name, Cust_First_Name

FROM Customer_Details

WHERE Cust_ID

NOT IN

(SELECT Cust_ID

FROM Customer_Fixed_Deposit);

Retrieval using SUB QUERIES

41

ER/CORP/CRS/DB07/003

Version No: 2.0
41Copyright © 2004,

Infosys Technologies Ltd

List customer names of all customers who have either a Fixed Deposit or a
loan but not both at any of Bank Branches. The list includes customers
who have no fixed deposit and loan at any of the bank branches.

SELECT Cust_Last_Name, Cust_Mid_Name, Cust_First_Name

FROM Customer_Details

WHERE Cust_ID

NOT IN

(SELECT Cust_ID

FROM Customer_Loan

WHERE Cust_ID

IN

(SELECT Cust_ID

FROM Customer_Fixed_Deposit));

Retrieval using SUB QUERIES

42

ER/CORP/CRS/DB07/003

Version No: 2.0
42Copyright © 2004,

Infosys Technologies Ltd

Summary
• The result of a query can be grouped based on a grouping column

• While checking for conditions after grouping by a column , Having is used
instead of where

• Grouped queries help look at data category wise

• When the query consists of more than one component, it is implemented in
the form of a nested query depending on the nature of the query

• Sub queries help split a problem involving different levels of data

• Relational algebra operations like union, intersect, difference, restriction,
projection and join help us get different combinations of data from more than
one table

43

ER/CORP/CRS/DB07/003

Version No: 2.0
43Copyright © 2004,

Infosys Technologies Ltd

Thank You!

