
Chapter 6: Integrity and SecurityChapter 6: Integrity and Security

Domain Constraints
Referential Integrity
Assertions
Triggers
SecuritySecurity
Authorization
Authorization in SQL

©Silberschatz, Korth and Sudarshan6.1Database System Concepts

Domain ConstraintsDomain Constraints

Integrity constraints guard against accidental damage to the
database, by ensuring that authorized changes to the database do
not result in a loss of data consistencynot result in a loss of data consistency.
Domain constraints are the most elementary form of integrity
constraint.
They test values inserted in the database, and test queries to
ensure that the comparisons make sense.
New domains can be created from existing data types

E.g. create domain Dollars numeric(12, 2)
create domain Pounds numeric(12,2)

We cannot assign or compare a value of type Dollars to a value ofWe cannot assign or compare a value of type Dollars to a value of
type Pounds.

However, we can convert type as below
(cast r.A as Pounds)

©Silberschatz, Korth and Sudarshan6.2Database System Concepts

(cast as ou ds)
(Should also multiply by the dollar-to-pound conversion-rate)

Domain Constraints (Cont.)Domain Constraints (Cont.)

The check clause in SQL-92 permits domains to be restricted:
Use check clause to ensure that an hourly-wage domain allows only
values greater than a specified valuevalues greater than a specified value.

create domain hourly-wage numeric(5,2)
constraint value-test check(value > = 4.00)

Th d i h t i t th t th t th h l iThe domain has a constraint that ensures that the hourly-wage is
greater than 4.00
The clause constraint value-test is optional; useful to indicate which
constraint an update violatedconstraint an update violated.

Can have complex conditions in domain check
create domain AccountType char(10)

t i t t t t tconstraint account-type-test
check (value in (‘Checking’, ‘Saving’))

check (branch-name in (select branch-name from branch))

©Silberschatz, Korth and Sudarshan6.3Database System Concepts

Referential IntegrityReferential Integrity

Ensures that a value that appears in one relation for a given set of
attributes also appears for a certain set of attributes in another
relationrelation.

Example: If “Perryridge” is a branch name appearing in one of the
tuples in the account relation, then there exists a tuple in the branch
relation for branch “Perryridge”.relation for branch Perryridge .

Formal Definition
Let r1(R1) and r2(R2) be relations with primary keys K1 and K2
respectivelyrespectively.
The subset α of R2 is a foreign key referencing K1 in relation r1, if for
every t2 in r2 there must be a tuple t1 in r1 such that t1[K1] = t2[α].
Referential integrity constraint also called subset dependency since itsReferential integrity constraint also called subset dependency since its
can be written as

∏α (r2) ⊆ ∏K1 (r1)

©Silberschatz, Korth and Sudarshan6.4Database System Concepts

Referential Integrity in the EReferential Integrity in the E--R ModelR Model

Consider relationship set R between entity sets E1 and E2. The
relational schema for R includes the primary keys K1 of E1 and
K2 of E2K2 of E2.
Then K1 and K2 form foreign keys on the relational schemas for
E1 and E2 respectively.

Weak entity sets are also a source of referential integrity
constraints

RE1 E2

constraints.
For the relation schema for a weak entity set must include the
primary key attributes of the entity set on which it depends

©Silberschatz, Korth and Sudarshan6.5Database System Concepts

Checking Referential Integrity on Checking Referential Integrity on
Database ModificationDatabase Modification

The following tests must be made in order to preserve the
following referential integrity constraint:

∏α (r2) ⊆ ∏K (r1)
Insert. If a tuple t2 is inserted into r2, the system must ensure
that there is a tuple t1 in r1 such that t1[K] = t2[α]. That is 1 1 1 2

t2 [α] ∈ ∏K (r1)
Delete. If a tuple, t1 is deleted from r1, the system must
compute the set of tuples in r that reference t :compute the set of tuples in r2 that reference t1:

σα = t1[K] (r2)
If this set is not emptyIf this set is not empty

either the delete command is rejected as an error, or
the tuples that reference t1 must themselves be deleted
(cascading deletions are possible)

©Silberschatz, Korth and Sudarshan6.6Database System Concepts

(cascading deletions are possible).

Database Modification (Cont.)Database Modification (Cont.)

Update. There are two cases:
If a tuple t2 is updated in relation r2 and the update modifies values for
foreign key α, then a test similar to the insert case is made:

Let t2’ denote the new value of tuple t2. The system must ensure
that

t2’[α] ∈ ∏K(r1)

If a tuple t1 is updated in r1, and the update modifies values for the
primary key (K), then a test similar to the delete case is made:

1. The system must compute
σα = t1[K] (r2)

using the old value of t1 (the value before the update is applied).

2. If this set is not empty

1. the update may be rejected as an error, or

2. the update may be cascaded to the tuples in the set, or

3. the tuples in the set may be deleted.

©Silberschatz, Korth and Sudarshan6.7Database System Concepts

Referential Integrity in SQLReferential Integrity in SQL

Primary and candidate keys and foreign keys can be specified as part of
the SQL create table statement:

The primary key clause lists attributes that comprise the primary keyThe primary key clause lists attributes that comprise the primary key.
The unique key clause lists attributes that comprise a candidate key.
The foreign key clause lists the attributes that comprise the foreign key and
the name of the relation referenced by the foreign key.

By default, a foreign key references the primary key attributes of the
referenced table

foreign key (account-number) references account

Short form for specifying a single column as foreign key
account-number char (10) references account

Reference columns in the referenced table can be explicitly specifiedReference columns in the referenced table can be explicitly specified
but must be declared as primary/candidate keys
foreign key (account-number) references account(account-number)

©Silberschatz, Korth and Sudarshan6.8Database System Concepts

Referential Integrity in SQL Referential Integrity in SQL –– ExampleExample

create table customer
(customer-name char(20),(customer name char(20),
customer-street char(30),
customer-city char(30),
primary key (customer-name))

create table branch
(branch-name char(15),
branch-city char(30),y (),
assets integer,
primary key (branch-name))

©Silberschatz, Korth and Sudarshan6.9Database System Concepts

Referential Integrity in SQL Referential Integrity in SQL –– Example (Cont.)Example (Cont.)

create table account
(account-number char(10),(account number char(10),
branch-name char(15),
balance integer,
primary key (account-number),
foreign key (branch-name) references branch)

create table depositor
(customer-name char(20),((),
account-number char(10),
primary key (customer-name, account-number),
foreign key (account-number) references account,
foreign key (customer-name) references customer)

©Silberschatz, Korth and Sudarshan6.10Database System Concepts

Cascading Actions in SQLCascading Actions in SQL

create table account
. . .
f i k (b h) f b hforeign key(branch-name) references branch

on delete cascade
on update cascade

). . .)
Due to the on delete cascade clauses, if a delete of a tuple in
branch results in referential-integrity constraint violation, the
d l t “ d ” t th t l ti d l ti th t l th tdelete “cascades” to the account relation, deleting the tuple that
refers to the branch that was deleted.
Cascading updates are similar.

©Silberschatz, Korth and Sudarshan6.11Database System Concepts

Cascading Actions in SQL (Cont.)Cascading Actions in SQL (Cont.)

If there is a chain of foreign-key dependencies across multiple
relations, with on delete cascade specified for each dependency,
a deletion or update at one end of the chain can propagate across
the entire chain.
If a cascading update to delete causes a constraint violation that
cannot be handled by a further cascading operation, the system y g p , y
aborts the transaction.

As a result, all the changes caused by the transaction and its
cascading actions are undone.g

Referential integrity is only checked at the end of a transaction
Intermediate steps are allowed to violate referential integrity provided
later steps remove the violationlater steps remove the violation
Otherwise it would be impossible to create some database states, e.g.
insert two tuples whose foreign keys point to each other

E g spouse attribute of relation

©Silberschatz, Korth and Sudarshan6.12Database System Concepts

E.g. spouse attribute of relation
marriedperson(name, address, spouse)

Referential Integrity in SQL (Cont.)Referential Integrity in SQL (Cont.)

Alternative to cascading:
on delete set null
on delete set default

Null values in foreign key attributes complicate SQL referential
integrity semantics, and are best prevented using not null

if any attribute of a foreign key is null, the tuple is defined to satisfy
the foreign key constraint!

©Silberschatz, Korth and Sudarshan6.13Database System Concepts

AssertionsAssertions

An assertion is a predicate expressing a condition that we wish
the database always to satisfy.
A ti i SQL t k th fAn assertion in SQL takes the form

create assertion <assertion-name> check <predicate>
When an assertion is made, the system tests it for validity, andWhen an assertion is made, the system tests it for validity, and
tests it again on every update that may violate the assertion

This testing may introduce a significant amount of overhead; hence
assertions should be used with great care.g

Asserting
for all X, P(X)

is achieved in a round-about fashion usingis achieved in a round about fashion using
not exists X such that not P(X)

©Silberschatz, Korth and Sudarshan6.14Database System Concepts

Assertion ExampleAssertion Example

The sum of all loan amounts for each branch must be less than
the sum of all account balances at the branch.

t ti t i t h kcreate assertion sum-constraint check
(not exists (select * from branch

where (select sum(amount) from loan
where loan branch name =where loan.branch-name =

branch.branch-name)
>= (select sum(amount) from account

where loan branch-name =where loan.branch name
branch.branch-name)))

©Silberschatz, Korth and Sudarshan6.15Database System Concepts

Assertion ExampleAssertion Example

Every loan has at least one borrower who maintains an account with
a minimum balance or $1000.00
create assertion balance-constraint check

(not exists (
select * from loan
where not exists (

select *
from borrower, depositor, account
where loan.loan-number = borrower.loan-number

and borrower.customer-name = depositor.customer-name
and depositor.account-number = account.account-number

d t b l 1000)))and account.balance >= 1000)))

©Silberschatz, Korth and Sudarshan6.16Database System Concepts

TriggersTriggers

A trigger is a statement that is executed automatically by the
system as a side effect of a modification to the database.
T d i t i h i tTo design a trigger mechanism, we must:

Specify the conditions under which the trigger is to be executed.
Specify the actions to be taken when the trigger executes.

Triggers introduced to SQL standard in SQL:1999, but supported
even earlier using non-standard syntax by most databases.

©Silberschatz, Korth and Sudarshan6.17Database System Concepts

Trigger Example Trigger Example

Suppose that instead of allowing negative account balances, the
bank deals with overdrafts by

tti th t b l tsetting the account balance to zero
creating a loan in the amount of the overdraft
giving this loan a loan number identical to the account number of the
overdrawn account

The condition for executing the trigger is an update to the
account relation that results in a negative balance value.

©Silberschatz, Korth and Sudarshan6.18Database System Concepts

©Silberschatz, Korth and Sudarshan6.19Database System Concepts

Trigger Example in SQL:1999Trigger Example in SQL:1999

create trigger overdraft-trigger after update on account
referencing new row as nrow
for each rowfor each row
when nrow.balance < 0
begin atomic

insert into borrower
(select customer-name, account-number
from depositor
where nrow.account-number =

depositor.account-number);
insert into loan values

(n.row.account-number, nrow.branch-name,
nrow balance);– nrow.balance);

update account set balance = 0
where account.account-number = nrow.account-number

end

©Silberschatz, Korth and Sudarshan6.20Database System Concepts

end

Triggering Events and Actions in SQLTriggering Events and Actions in SQL

Triggering event can be insert, delete or update
Triggers on update can be restricted to specific attributes

E.g. create trigger overdraft-trigger after update of balance on
account

Values of attributes before and after an update can be referenced
referencing old row as : for deletes and updates
referencing new row as : for inserts and updates

Triggers can be activated before an event which can serve as extraTriggers can be activated before an event, which can serve as extra
constraints. E.g. convert blanks to null.

create trigger setnull-trigger before update on r
referencing new row as nrowreferencing new row as nrow
for each row

when nrow.phone-number = ‘ ‘
set nrow.phone-number = null

©Silberschatz, Korth and Sudarshan6.21Database System Concepts

Statement Level TriggersStatement Level Triggers

Instead of executing a separate action for each affected row, a
single action can be executed for all rows affected by a
transactiontransaction

Use for each statement instead of for each row
Use referencing old table or referencing new table to refer
to temporary tables (called transition tables) containing theto temporary tables (called transition tables) containing the
affected rows
Can be more efficient when dealing with SQL statements that
update a large number of rowsupdate a large number of rows

©Silberschatz, Korth and Sudarshan6.22Database System Concepts

TriggersTriggers

Triggers can be disabled or enabled; by default they are enabled
when they are created.

alter trigger trigger_name disable
alter trigger trigger name enablealter trigger trigger_name enable
drop trigger trigger_name

©Silberschatz, Korth and Sudarshan6.23Database System Concepts

When Not To Use TriggersWhen Not To Use Triggers

Triggers were used earlier for tasks such as
maintaining summary data (e.g. total salary of each department)
Replicating databases by recording changes to special relations
(called change or delta relations) and having a separate process
that applies the changes over to a replica

Th b tt f d i thThere are better ways of doing these now:
Databases today provide built in materialized view facilities to
maintain summary data
Databases provide built-in support for replication

Encapsulation facilities can be used instead of triggers in many
cases

Define methods to update fields
Carry out actions as part of the update methods instead of
through a trigger

©Silberschatz, Korth and Sudarshan6.24Database System Concepts

g gg

End of ChapterEnd of Chapter

©Silberschatz, Korth and Sudarshan6.25Database System Concepts

