
An Introduction to Databases and Database
Management Systems.

Introduction

An important aspect of most every business is record keeping. In our information society,
this has become an important aspect of business, and much of the world's computing
power is dedicated to maintaining and using databases.
Databases of all kinds pervade almost every business. All kinds of data, from emails and
contact information to financial data and records of sales, are stored in some form of a
database. The quest is on for meaningful storage of less-structured information, such as
subject knowledge.

What is a Database?

A brief definition might be:

• A STORE OF INFORMATION,
• HELD OVER A PERIOD OF TIME,
• IN COMPUTER-READABLE FORM.

DBMS – A Database is a collection of interrelated data and a Database Management
System is a set of programs to use and/or modify this data.

DBMS functions

Data definition
This includes describing:

• FILES
• RECORD STRUCTURES
• FIELD NAMES, TYPES and SIZES
• RELATIONSHIPS between records of different types
• Extra information to make searching efficient, e.g. INDEXES.

Data entry and validation
Validation may include:

• TYPE CHECKING
• RANGE CHECKING
• CONSISTENCY CHECKING

In an interactive data entry system, errors should be detected immediately - some can be
prevented altogether by keyboard monitoring - and recovery and re-entry permitted.

Updating

Updating involves:

• Record INSERTION
• Record MODIFICATION
• Record DELETION.

At the same time any back-ground data such as indexes or pointers from one record to
another must be changed to maintain consistency. Updating may take place interactively,
or by submission of a file of transaction records; handling these may require a program of
some kind to be written, either in a conventional programming language (a host language,
e.g. COBOL or C) or in a language supplied by the DBMS for constructing command
files.

Data retrieval on the basis of selection criteria
For this purpose most systems provide a QUERY LANGUAGE with which the
characteristics of the required records may be specified. Query languages differ
enormously in power and sophistication but a standard which is becoming increasingly
common is based on the so-called RELATIONAL operations. These allow:

• selection of records on the basis of particular field values.
• selection of particular fields from records to be displayed.
• linking together records from two different files on the basis of matching field

values.
Arbitrary combinations of these operators on the files making up a database can answer a
very large number of queries without requiring users to go into one record at a time
processing.

Report definition
Most systems provide facilities for describing how summary reports from the database
are to be created and laid out on paper. These may include obtaining:

• COUNTS
• TOTALS
• AVERAGES
• MAXIMUM and MINIMUM values

over particular CONTROL FIELDS. Also specification of PAGE and LINE LAYOUT,
HEADINGS, PAGE-NUMBERING, and other narrative to make the report
comprehensible.

Security.
This has several aspects:

• Ensuring that only those authorized to do so can see and modify the data,
generally by some extension of the password principle.

• Ensuring the consistency of the database where many users are accessing and up-
dating it simultaneously.

• Ensuring the existence and INTEGRITY of the database after hardware or
software failure. At the very least this involves making provision for back-up and
re-loading.

Approaches to Data Management

• File-Based Systems

Conventionally, before the Database systems evolved, data in software systems
was stored in and represented using flat files.

• Database Systems

Database Systems evolved in the late 1960s to address common issues in
applications handling large volumes of data which are also data intensive. Some
of these issues could be traced back to the following disadvantages of File-based
systems.

Drawbacks of File-Based Systems

As shown in the figure, in a file-based system,
different programs in the same application
may be interacting with different private data
files. There is no system enforcing any
standardized control on the organization and
structure of these data files.

• Data Redundancy and Inconsistency

Since data resides in different private
data files, there are chances of
redundancy and resulting
inconsistency. For example, in the
above example shown, the same
customer can have a savings account
as well as a mortgage loan. Here the
customer details may be duplicated since the programs for the two functions store
their corresponding data in two different data files. This gives rise to redundancy
in the customer's data. Since the same data is stored in two files, inconsistency
arises if a change made in the data in one file is not reflected in the other.

• Unanticipated Queries

In a file-based system, handling sudden/ad-hoc queries can be difficult, since it
requires changes in the existing programs.

• Data Isolation

Though data used by different programs in the application may be related, they
reside in isolated data files.

• Concurrent Access Anomalies

In large multi-user systems the same file or record may need to be accessed by
multiple users simultaneously. Handling this in a file-based systems is difficult.

• Security Problems

In data-intensive applications, security of data is a major concern. Users should be
given access only to required data and not the whole database. In a file-based
system, this can be handled only by additional programming in each application.

• Integrity Problems

In any application, there will be certain data integrity rules which needs to be
maintained. These could be in the form of certain conditions/constraints on the
elements of the data records. In the savings bank application, one such integrity
rule could be “Customer ID, which is the unique identifier for a customer record,
should be non-empty”. There can be several such integrity rules. In a file-based
system, all these rules need to be explicitly programmed in the application
program.

It may be noted that, we are not trying to say that handling the above issues like
concurrent access, security, integrity problems, etc., is not possible in a file-based system.
The real issue was that, though all these are common issues of concern to any data-
intensive application, each application had to handle all these problems on its own. The
application programmer needs to bother not only about implementing the application
business rules but also about handling these common issues.

Advantages of Database Systems

Why Use a DBMS?

 Data independence and efficient access.
 Reduced application development time.
 Data integrity and security.
 Uniform data administration.
 Concurrent access, recovery from crashes.

As shown in the figure, the DBMS is a
central system which provides a common
interface between the data and the various
front-end programs in the application. It
also provides a central location for the
whole data in the application to reside.

Due to its centralized nature, the database
system can overcome the disadvantages of
the file-based system as discussed below.

• Minimal Data Redundancy
Since the whole data resides in one
central database, the various
programs in the application can
access data in different data files.
Hence data present in one file need
not be duplicated in another. This
reduces data redundancy. However, this does not mean all redundancy can be
eliminated. There could be business or technical reasons for having some amount
of redundancy. Any such redundancy should be carefully controlled and the
DBMS should be aware of it.

• Data Consistency
Reduced data redundancy leads to better data consistency.

• Data Integration
Since related data is stored in one single database, enforcing data integrity is
much easier. Moreover, the functions in the DBMS can be used to enforce the
integrity rules with minimum programming in the application programs.

• Data Sharing
Related data can be shared across programs since the data is stored in a
centralized manner. Even new applications can be developed to operate against
the same data.

• Enforcement of Standards
Enforcing standards in the organization and structure of data files is required and
also easy in a Database System, since it is one single set of programs which is
always interacting with the data files.

• Application Development Ease
The application programmer need not build the functions for handling issues like
concurrent access, security, data integrity, etc. The programmer only needs to
implement the application business rules. This brings in application development

ease. Adding additional functional modules is also easier than in file-based
systems.

• Better Controls
Better controls can be achieved due to the centralized nature of the system.

• Data Independence
The architecture of the DBMS can be viewed as a 3-level system comprising the
following:
- The internal or the physical level where the data resides.
- The conceptual level which is the level of the DBMS functions
- The external level which is the level of the application programs or the end user.
Data Independence is isolating an upper level from the changes in the
organization or structure of a lower level. For example, if changes in the file
organization of a data file do not demand for changes in the functions in the
DBMS or in the application programs, data independence is achieved. Thus Data
Independence can be defined as immunity of applications to change in physical
representation and access technique. The provision of data independence is a
major objective for database systems.

• Reduced Maintenance
Maintenance is less and easy, again, due to the centralized nature of the system.

Functions of a DBMS

The functions performed by a typical DBMS are the following:

• Data Definition

The DBMS provides functions to define the structure of the data in the application.
These include defining and modifying the record structure, the type and size of
fields and the various constraints/conditions to be satisfied by the data in each
field.

• Data Manipulation

Once the data structure is defined, data needs to be inserted, modified or deleted.
The functions which perform these operations are also part of the DBMS. These
function can handle planned and unplanned data manipulation needs. Planned
queries are those which form part of the application. Unplanned queries are ad-
hoc queries which are performed on a need basis.

• Data Security & Integrity

The DBMS contains functions which handle the security and integrity of data in
the application. These can be easily invoked by the application and hence the
application programmer need not code these functions in his/her programs.

• Data Recovery & Concurrency

Recovery of data after a system failure and concurrent access of records by
multiple users are also handled by the DBMS.

• Data Dictionary Maintenance

Maintaining the Data Dictionary which contains the data definition of the
application is also one of the functions of a DBMS.

• Performance

Optimizing the performance of the queries is one of the important functions of a
DBMS. Hence the DBMS has a set of programs forming the Query Optimizer
which evaluates the different implementations of a query and chooses the best
among them.

Thus the DBMS provides an environment that is both convenient and efficient to use
when there is a large volume of data and many transactions to be processed.

Role of the Database Administrator

Typically there are three types of users for a DBMS. They are :

1. The End User who uses the application. Ultimately, this is the user who actually
puts the data in the system into use in business. This user need not know anything
about the organization of data in the physical level. She also need not be aware of
the complete data in the system. She needs to have access and knowledge of only
the data she is using.

2. The Application Programmer who develops the application programs. She has
more knowledge about the data and its structure since she has manipulate the data
using her programs. She also need not have access and knowledge of the complete
data in the system.

3. The Database Administrator (DBA) who is like the super-user of the system. The
role of the DBA is very important and is defined by the following functions.

• Defining the Schema

The DBA defines the schema which contains the structure of the data in the
application. The DBA determines what data needs to be present in the system ad
how this data has to be represented and organized.

• Liaising with Users

The DBA needs to interact continuously with the users to understand the data in
the system and its use.

• Defining Security & Integrity Checks

The DBA finds about the access restrictions to be defined and defines security
checks accordingly. Data Integrity checks are also defined by the DBA.

• Defining Backup / Recovery Procedures

The DBA also defines procedures for backup and recovery. Defining backup
procedures includes specifying what data is to backed up, the periodicity of taking
backups and also the medium and storage place for the backup data.

• Monitoring Performance

The DBA has to continuously monitor the performance of the queries and take
measures to optimize all the queries in the application.

Types of Database Systems

Database Systems can be catagorised according to the data structures and operators they
present to the user. The oldest systems fall into inverted list, hierarchic and network
systems. These are the pre-relational models.

• In the Hierarchical Model, different records are inter-related through hierarchical
or tree-like structures. A parent record can have several children, but a child can
have only one parent. In the figure, there are two hierarchies shown - the first
storing the relations between CUSTOMER, ORDERS, CONTACTS and
ORDER_PARTS and the second showing the relation between PARTS,
ORDER_PARTS and SALES_HISTORY. The many-to-many relationship is
implemented through the ORDER_PARTS segment which occurs in both the
hierarchies. In practice, only one tree stores the ORDER_PARTS segment, while
the other has a logical pointer to this segment. IMS (Information Management
System) of IBM is an example of a Hierarchical DBMS.

• In the Network Model, a parent can have several children and a child can also
have many parent records. Records are physically linked through linked-lists.
IDMS from Computer Associates International Inc. is an example of a Network
DBMS.

• In the Relational Model, unlike the Hierarchical and Network models, there are
no physical links. All data is maintained in the form of tables consisting of rows
and columns. Data in two tables is related through common columns and not
physical links or pointers. Operators are provided for operating on rows in tables.
Unlike the other two type of DBMS, there is no need to traverse pointers in the
Relational DBMS. This makes querying much more easier in a Relational DBMS
than in the the Hierarchical or Network DBMS. This, in fact, is a major reason for
the relational model to become more programmer friendly and much more
dominant and popular in both industrial and academic scenarios. Oracle, Sybase,
DB2, Ingres, Informix, MS-SQL Server are few of the popular Relational DBMSs.

CUSTOMER

CUST. NO. CUSTOMER NAME ADDRESS CITY
15371 Nanubhai & Sons L. J. Road Mumbai
...
...
...

•

CONTACTS

ORDERS

CUST.NO. CONTACT DESIGNATION ORDER
NO.

ORDER
DATE

CUSTOMER
NO.

15371 Nanubhai Owner 3216 24-June-1997 15371
15371 Rajesh Munim Accountant
...
...

PARTS ORDERS-PARTS
PARTS
NO. PARTS DESC PART PRICE ORDER

NO. PART NO. QUANTITY

S3 Amkette 3.5"
Floppies 400.00 3216 C1 300

... 3216 S3 120

...

...

•
SALES-HISTORY

PART NO. REGION YEAR UNITS
S3 East 1996 2000
S3 North 1996 5500

S3 South 1996 12000
S3 West 1996 20000

The recent developments in the area have shown up in the form of certain object and
object/relational DBMS products. Examples of such systems are GemStone and Versant
ODBMS. Research has also proceeded on to a variety of other schemes including the
multi-dimensional approach and the logic-based approach.

3-Level Database System Architecture

• The External Level represents the collection of views available to different end-
users.

• The Conceptual level is the representation of the entre information content of the
database.

• The Internal level is the physical level which shows how the data data is stored,
what are the representation of the fields etc.

