
Relational DatabaseRelational DatabaseRelational Database Relational Database
DesignDesignDesignDesign

COMPILED BY: RITURAJ JAINCOMPILED BY: RITURAJ JAIN

The Banking SchemaThe Banking Schema
branch = (branch_name, branch_city, assets)

customer = (customer_id, customer_name, customer_street, (_ _ _

customer_city)

account = (account_number, balance)

depositor = (customer_id, account_number)

loan = (loan_number, amount)

borrower = (customer_id, loan_number)

Pitfalls in Relational Database DesignPitfalls in Relational Database Design

Relational database design requires that we find a “good” collection of

relation schemas. A bad design may lead to

Repetition of Information.

Inability to represent certain information.

Design Goals:Design Goals:

Avoid redundant data

Ensure that relationships among attributes are represented

Facilitate the checking of updates for violation of database

integrity constraints.

ExampleExample
Consider the relation schema for loan:Consider the relation schema for loan:

Lending-schema = (branch-name, branch-city, assets,
customer-name, loan-number, amount)

B name B city assets Cust name L no AmountB_name B_city assets Cust_name L_no Amount
Coll_Road Nadiad 9000000 Ajay L 21 21000
Coll_Road Nadiad 9000000 Suresh L 23 26500
C G R d Ah d b d 2574000 S h L 43 2300C.G. Road Ahmedabad 2574000 Suresh L 43 2300
Raj Marg Surat 2563000 Ajay L 100 74500
Raj Marg Surat 2563000 Rakshita L 45 100000

Redundancy:
Data for branch-name, branch-city, assets are repeated for each loan that a
branch makes
Wastes space
Complicates updating, introducing possibility of inconsistency of assets value

Null values
Cannot store information about a branch if no loans existCannot store information about a branch if no loans exist
Can use null values, but they are difficult to handle.

Goal Goal —— Devise a Theory for the FollowingDevise a Theory for the Following

Decide whether a particular relation R is in “good” form.

In the case that a relation R is not in “good” form decompose it into aIn the case that a relation R is not in “good” form, decompose it into a

set of relations {R1, R2, ..., Rn} such that

h l ti i i d feach relation is in good form

the decomposition is a lossless-join decomposition

DecompositionDecomposition
Decompose the relation schema Lending-schema into:Decompose the relation schema Lending schema into:

Branch-schema = (branch-name, branch-city,assets)

B_name B_city assets Cust_name
Coll_Road Nadiad 9000000 Ajay
Coll_Road Nadiad 9000000 Suresh
C.G. Road Ahmedabad 2574000 Suresh

Loan-info-schema = (customer-name loan-number

Raj Marg Surat 2563000 Ajay
Raj Marg Surat 2563000 Rakshita

Loan info schema (customer name, loan number,
branch-name, amount)

Cust_name L_no Amount
Ajay L 21 21000Ajay L 21 21000
Suresh L 23 26500
Suresh L 43 2300
Aj L 100 74500Ajay L 100 74500
Rakshita L 45 100000

DecompositionDecomposition
Sometimes it is required to reconstruct loan relation from the Branch schemaSometimes it is required to reconstruct loan relation from the Branch-schema

and Loan-info-schema: so we can do this by

Branch-schema Loan-info-schemaBranch schema Loan info schema

B_name B_city assets Cust_name L_no Amount
Coll_Road Nadiad 9000000 Ajay L 21 21000
Coll_Road Nadiad 9000000 Ajay L 100 74500
Coll_Road Nadiad 9000000 Suresh L 23 26500
Coll Road Nadiad 9000000 Suresh L 43 2300_
C.G. Road Ahmedabad 2574000 Suresh L 23 26500

C.G. Road Ahmedabad 2574000 Suresh L 43 2300

Raj Marg Surat 2563000 Ajay L 21 21000Raj Marg Surat 2563000 Ajay L 21 21000
Raj Marg Surat 2563000 Ajay L 100 74500
Raj Marg Surat 2563000 Rakshita L 45 100000

Which customer are borrowers of from which branch? (lost information)

DecompositionDecomposition

In the last example we are not able to identify which customers are

borrower from which branch.

because of this loss of informationbecause of this loss of information

This type of decomposition is called lossy decomposition.

A decomposition that is not a lossy-join decomposition is called lossless

join decompositionjoin decomposition.

SoSo lossylossy joinjoin decompositiondecomposition isis aa badbad databasedatabase designdesign..

DecompositionDecomposition

All attributes of an original schema (R) must appear in the decomposition

(R1, R2, R3, …… Rn):

R = R1 ∪ R2 ∪ R3∪ RR R1 ∪ R2 ∪ R3∪ Rn

Lossless-join decomposition.

For all possible relations r on schema R

r = ∏ (r) ∏ (r) ∏ (r) ∏ (r)r = ∏R1 (r) ∏R2 (r) ∏R3 (r) ……….. ∏Rn (r)

What is Normalization?What is Normalization?

Source: Infosys Campus Connect Study Material

Need for NormalizationNeed for Normalization
Student Course Result Table_ _

• Data Duplication • Insert Anomaly
• Delete Anomaly • Update Anomaly

Source: Infosys Campus Connect Study Material

Need for NormalizationNeed for Normalization

• Duplication of Data – The same data is listed in multiple lines of the

database

• Insert Anomaly – A record about an entity cannot be inserted into the

table without first inserting information about another entity – Cannot enter a

student details without a course details

• Delete Anomaly – A record cannot be deleted without deleting a record

b t l t d tit C t d l t d t il ith t d l ti ll fabout a related entity. Cannot delete a course details without deleting all of

the students’ information.

• Update Anomaly Cannot update information without changing• Update Anomaly – Cannot update information without changing

information in many places. To update student information, it must be

updated for each course the student has placedupdated for each course the student has placed

Desirable Properties of DecompositionDesirable Properties of Decomposition
1 We'll take another look at the schema1. We'll take another look at the schema
Lending-schema = (B_name, assets, B_city, L_no, cust_name,amount)
which we saw was a bad design.g

2. The set of functional dependencies we required to hold on this schema
was:was:

B_name → assets B_city
L_no → amount B_name_ _

3. If we decompose it into
BranchBranch--schema = (schema = (B_nameB_name, assets, , assets, B_cityB_city))

LoanLoan--infoinfo--schema = (schema = (B_nameB_name, , L_noL_no, amount), amount)
BorrowBorrow--schema = (schema = (cust namecust name L noL no))BorrowBorrow--schema = (schema = (cust_namecust_name, , L_noL_no))

we claim this decomposition has several desirable properties.

Desirable Properties of DecompositionDesirable Properties of Decomposition

a) Lossless Decompositiona) Lossless Decomposition

b) Dependency Preservationb) Dependency Preservation

c) Repetition of informationc) Repetition of information

Desirable Properties of DecompositionDesirable Properties of Decomposition
a) Lossless Decompositiona) Lossless Decomposition

How can we decide whether a decomposition is lossless?

Let R be a relation schema.

Let F be a set of functional dependencies on R.

Let R1 and R2 form a decomposition of R.

The decomposition is a lossless-join decomposition of R if at least p j p

one of the following functional dependencies are in F+:

() R1 ∩ R2 R1(a) R1 ∩ R2 → R1

(b) R1 ∩ R2 → R2

ExampleExample
a) Lossless Decompositiona) Lossless Decomposition

R = (A, B, C)

F = {A → B, B → C){)

Can be decomposed in two different ways

R1 = (A, B), R2 = (B, C)

Lossless-join decomposition:

R1 ∩ R2 = {B} and B → BC

Dependency preserving

R1 = (A, B), R2 = (A, C)

Lossless-join decomposition:

R1 ∩ R2 = {A} and A → AB

Not dependency preservingNot dependency preserving

(cannot check B → C without computing R1 R2)

Desirable Properties of DecompositionDesirable Properties of Decomposition
a) Lossless Decompositiona) Lossless Decomposition

Example:

First we decompose Lending-schema into Branch-schema and

Loan-info-schema

Lending-schema = (B_name, assets, B_city, L_no, cust_name,amount)

Branch-schema = (B_name, B_city, assets)

Loan-info-schema = (B_name, cust_name, L_no, amount)

B name assets B city the augmentation rule for functionalB_name assets B_city, the augmentation rule for functional

dependencies implies that B_name → B_name assets B_city

Since Branch-schema ∩ Loan-info-schema = B name ourSince Branch-schema ∩ Loan-info-schema = B_name, our

decomposition is lossless join.

Desirable Properties of DecompositionDesirable Properties of Decomposition
a) Lossless Decompositiona) Lossless Decomposition

Example Continue:

Next we decompose Loan-info-schema into Loan-schema and

Borrow-schema

Loan-info-schema = (B_name, cust_name, L_no, amount)

Loan-schema = (B_name, L_no, amount)

Borrow-schema = (cust_name, L_no)

As L no is the common attribute andAs L_no is the common attribute, and

L_no → L_no amount B_name

This is also a lossless-join decompositionThis is also a lossless-join decomposition.

Desirable Properties of DecompositionDesirable Properties of Decomposition
b) Dependency Preservationb) Dependency Preservation

Check that updates to the database do not result in illegal relations

Better to check updates without having to compute natural joins.

To know whether joins must be computed, we need to determine what

functional dependencies may be tested by checking each relation

individually.

Let F be a set of functional dependencies on schema R. Let {R1,R2, . .

.,Rn} be a decomposition of R.

The restriction of F to Ri is the set of all functional dependencies(

denoted as Fi) in F+ that include only attributes of Ri.

Desirable Properties of DecompositionDesirable Properties of Decomposition
b) Dependency Preservationb) Dependency Preservation

F1,F2, . . .,Fn is the set of dependencies of decomposed relations.

F’ = F1 U F2 U . . . U Fn

When a relational schema R defined by functional dependency F is

decomposed into {R1,R2, . . .,Rn}, each functional dependency should be

testable by at least one of Ri.

Formally, let F+ be the closure F and let F’+ be the closure of

dependencies covered by Ri.

FF++ ==== F’F’++ forfor dependencydependency preservationpreservation..

Testing for Dependency PreservationTesting for Dependency Preservation
b) Dependency Preservationb) Dependency Preservation

compute F+

for each schema Ri in D doi

begin

Fi := the restriction of F+ to Ri ;

end

F’ := φ

for each restriction F dofor each restriction Fi do

begin

F’ = F’ U Fi

end

compute F’+ ;

if (F’+ F+) th t (t)if (F’+ = F+) then return (true)

else return (false);

Testing for Dependency PreservationTesting for Dependency Preservation
b) Dependency Preservationb) Dependency Preservation

Lending-schema = (B_name, assets, B_city, L_no, cust_name,amount)

Decomposed into these schemas:

BranchBranch--schema = (schema = (B_nameB_name, assets, , assets, B_cityB_city))
LoanLoan--infoinfo--schema = (schema = (B_nameB_name, , L_noL_no, amount), amount)

BB h (h (tt LL))BorrowBorrow--schema = (schema = (cust_namecust_name, , L_noL_no))

Decomposition of Lending-schema is dependency preserving.

B_nameB_name assetsassets B_cityB_city
L noL no amountamount B nameB nameL_noL_no amountamount B_nameB_name

Desirable Properties of DecompositionDesirable Properties of Decomposition
c) Repetition of Informationc) Repetition of Information

Our decomposition does not suffer from the repetition of information

blproblem.

Branch and loan data are separated into distinct relations.

Thus we do not have to repeat branch data for each loan.

If a single loan is made to several customers, we do not have to repeat

the loan amount for each customer.

This lack of redundancy is obviously desirable.

We will see how this may be achieved through the use of normal

forms.

Functional dependencyFunctional dependency

Source: Infosys Campus Connect Study Material

Functional dependencyFunctional dependency

Source: Infosys Campus Connect Study Material

Functional dependencyFunctional dependency

Source: Infosys Campus Connect Study Material

Dependency DiagramDependency Diagram

Source: Infosys Campus Connect Study Material

Full DependencyFull Dependency

Source: Infosys Campus Connect Study Material

Partial DependencyPartial Dependency

Source: Infosys Campus Connect Study Material

Transitive DependencyTransitive Dependency

Source: Infosys Campus Connect Study Material

First Normal FormFirst Normal Form
Domain is atomic if its elements are considered to be indivisible units

Examples of non-atomic domains:

Set of names, composite attributes

Identification numbers like CS101 that can be broken up into parts

A relational schema R is in first normal form if the domains of all attributes of R

are atomic

Non-atomic values complicate storage and encourage redundant (repeated)

storage of data

First Normal Form (Cont’d)First Normal Form (Cont’d)

Source: Infosys Campus Connect Study Material

Example … Without NormalizationExample … Without Normalization
S CStudent_Course_Result Table

Source: Infosys Campus Connect Study Material

Table in 1NF Table in 1NF Student_Course_ResultStudent_Course_Result TableTable
Source: Infosys Campus Connect Study Material

First Normal Form ExampleFirst Normal Form Example

Course_Pref_Table

Dept Prof
Course Pref

Course Course deptCourse Course_dept

Rajiv
101 CS
102 CS
103 EC

CE

Mahesh

101 CS
102 CS
103 EC
104 EC104 EC

CL Ruchika
101 CS
103 EC
106 EE

IT Rajesh

103 EC
104 EC
106 EE
102 CS102 CS
105 EE

First Normal Form ExampleFirst Normal Form Example
Course Pref TableCourse_Pref_Table

Dept Prof Course Course_dept
CE Rajiv 101 CS
CE Rajiv 102 CSCE Rajiv 102 CS
CE Rajiv 103 EC
CE Mahesh 101 CS
CE Mahesh 102 CSCE Mahesh 102 CS
CE Mahesh 103 EC
CE Mahesh 104 EC
CL Ruchika 101 CSCL Ruchika 101 CS
CL Ruchika 103 EC
CL Ruchika 106 EE
IT Rajesh 103 ECIT Rajesh 103 EC
IT Rajesh 104 EC
IT Rajesh 106 EE
IT Rajesh 102 CSIT Rajesh 102 CS
IT Rajesh 105 EE

Second normal form: 2NFSecond normal form: 2NF

Source: Infosys Campus Connect Study Material

Prime Vs NonPrime Vs Non--Prime AttributesPrime Attributes
• An attribute of a relation R that belongs to any key of R is said to be a prime attribute and that

which doesn’t is a non-prime attribute

Report(S# C# StudentName DateOfBirth CourseName PreRequisite DurationInDaysReport(S#, C#, StudentName, DateOfBirth, CourseName, PreRequisite, DurationInDays,

DateOfExam, Marks, Grade)

Source: Infosys Campus Connect Study Material

Second normal form: 2NFSecond normal form: 2NF

Source: Infosys Campus Connect Study Material

Second normal form: 2NFSecond normal form: 2NF

Source: Infosys Campus Connect Study Material

Second normal form: Table in 2NFSecond normal form: Table in 2NF

Source: Infosys Campus Connect Study Material

Second normal form: Table in 2NFSecond normal form: Table in 2NF

Source: Infosys Campus Connect Study Material

Second normal form … ExampleSecond normal form … Example
Example: The following relation is in First Normal Form, but not Second

Normal Form: Cust_Order_table

OrderNo Customer ContactPerson Total

1 Acme Widgets John Doe $134.23

2 ABC Corporation Fred Flintstone $521.24

3 Acme Widgets John Doe $1042.42

4 Acme Widgets John Doe $928 534 Acme Widgets John Doe $928.53

OrderNo Customer Total

Customer ContactPerson

Second normal form … ExampleSecond normal form … Example

Customer ContactPerson
Acme Widgets John Doe

Customer table

Customer ContactPerson
Acme Widgets John Doe
ABC Corporation Fred Flintstone

OrderNo Customer Total

Order_table

1 Acme Widgets $134.23

2 ABC Corporation $521.24
OrderNo Customer Total

3 Acme Widgets $1042.42

4 A Wid $928 34 Acme Widgets $928.53

BoyceBoyce--Codd Normal FormCodd Normal Form
A relation schema R is in BCNF with respect to a set F of functional dependencies ifA relation schema R is in BCNF with respect to a set F of functional dependencies if

for all functional dependencies in F+ of the form

α → β

α → β is trivial (i.e., β ⊆ α)

where α ⊆ R and β ⊆ R, at least one of the following holds:

α → β is trivial (i.e., β ⊆ α)

α is a superkey for R

Example schema not in BCNF:

bor loan = (customer id loan number amount)bor_loan (customer_id, loan_number, amount)

because loan_number → amount holds on bor_loan but loan_number is not a

superkey

Decomposing a Schema into BCNFDecomposing a Schema into BCNF

Suppose we have a schema R and a non-trivial dependency α → β causes a

violation of BCNF.

We decompose R into:

• (α U β)

• (R - (β - α))

In our example,

α = loan_number

β = amount

and bor_loan is replaced by

(α U β) = (loan number, amount)(β) (_ ,)

(R - (β - α)) = (customer_id, loan_number)

Decomposing a Schema into BCNFDecomposing a Schema into BCNF

Lending-schema = (B_name, assets, B_city, L_no, cust_name,amount)

B_nameB_name assetsassets B_cityB_city (not(not trivialtrivial andand B_nameB_name isis notnot aa supersuper key)key)

L_noL_no amountamount B_nameB_name (not(not trivialtrivial andand L_noL_no isis notnot aa supersuper key)key)

Candidate key for this Schema is { L_no, cust_name}. This Schema is not in

BCNF form. So decompose this schema into below given two schemas

BranchBranch--schemaschema == ((B_nameB_name,, B_cityB_city,, assets)assets)

LoanLoan--infoinfo--schemaschema == ((B_nameB_name,, cust_namecust_name,, L_noL_no,, amount)amount)

B_name assets B_city, the augmentation rule for functional dependencies

implies that B_name → B_name assets B_city

B_name is super key in Branch_schema.

Decomposing a Schema into BCNFDecomposing a Schema into BCNF

LoanLoan--infoinfo--schemaschema == ((B_nameB_name,, cust_namecust_name,, L_noL_no,, amount)amount)

L_noL_no amountamount B_nameB_name (not(not trivialtrivial andand L_noL_no isis notnot aa supersuper key)key)

This Schema is not in BCNF form. So decompose this schema into below

given two schemas

LoanLoan--schema = (schema = (B_nameB_name, , L_noL_no, amount), amount)

BorrowBorrow--schema = (schema = (cust_namecust_name, , L_noL_no))

Both of these two schemas are in BCNF.

Decomposition of LendingLending--schemaschema to all these three schema

BranchBranch--schemaschema, LoanLoan--schemaschema and BorrowBorrow--schemaschema having dependency

preservation and lossless decomposition.

BCNF and Dependency Loss…ExampleBCNF and Dependency Loss…Example

bankerbanker--schemaschema == ((branchbranch--name,name, customercustomer--name,name, bankerbanker--name)name)

bankerbanker--name name branchbranch--namename

branchbranch--name customername customer--name name bankerbanker--name name

Banker-schema is not in BCNF -- Why?

banker-name is not a super key. So decompose banker-schema…..

bankerbanker--branchbranch--schema = (bankerschema = (banker--name, branchname, branch--name)name)

customercustomer--bankerbanker--schema = (customerschema = (customer--name, bankername, banker--name)name)

New schema in BCNF but only one dependency is preserves

bankerbanker--name name branchbranch--namename

While other dependency is not preserve.

Testing for BCNFTesting for BCNF
To check if a non trivial dependency →β causes a violation of BCNFTo check if a non-trivial dependency α →β causes a violation of BCNF
1. compute α+ (the attribute closure of α), and
2. verify that it includes all attributes of R, that is, it is a superkey of R.

Simplified test: To check if a relation schema R is in BCNF, it suffices to check
only the dependencies in the given set F for violation of BCNF, rather than
checking all dependencies in F+.g p

If none of the dependencies in F causes a violation of BCNF, then none of
the dependencies in F+ will cause a violation of BCNF either.

H i l F i i t h t ti l ti iHowever, using only F is incorrect when testing a relation in a
decomposition of R

Consider R = (A, B, C, D, E), with F = { A → B, BC → D}
Decompose R into R1 = (A,B) and R2 = (A,C,D, E)
Neither of the dependencies in F contain only attributes from
(A,C,D,E) so we might be mislead into thinking R2 satisfies BCNF.(A,C,D,E) so we might be mislead into thinking R2 satisfies BCNF.
In fact, dependency AC → D in F+ shows R2 is not in BCNF.

Testing Decomposition for BCNFTesting Decomposition for BCNF

To check if a relation Ri in a decomposition of R is in BCNF,

Eith t t R f BCNF ith t t th t i ti f F (i F) t R (th tEither test Ri for BCNF with respect to the restriction of F (i.e. Fi) to Ri (that

is, all FDs in F+ that contain only attributes from Ri)

Third Normal FormThird Normal Form
A relation schema R is in third normal form (3NF) if for all:

α → β in F+

at least one of the following holds:

αα →→ ββ isis trivialtrivial (i(i..ee..,, ββ ∈∈ αα))

αα isis aa superkeysuperkey forfor RR

EachEach attributeattribute AA inin ((ββ –– αα)) isis containedcontained inin aa candidatecandidate keykey forfor RR..

(NOTE(NOTE:: eacheach attributeattribute maymay bebe inin aa differentdifferent candidatecandidate key)key)

IfIf aa relationrelation isis inin BCNFBCNF itit isis inin 33NFNF (since in BCNF one of the first two

conditions above must hold).

Third condition is a minimal relaxation of BCNF to ensure dependency

tipreservation.

Mihir
Highlight

Third Normal FormThird Normal Form

Source: Infosys Campus Connect Study Material

Third Normal FormThird Normal Form

NoteNote that 3NF is concerned with transitive dependencies which do not involve

did t k A 3NF l ti ith th did t k ill l lcandidate keys. A 3NF relation with more than one candidate key will clearly

have transitive dependencies of the form:

primary_keyprimary_key other_candidate_keyother_candidate_key any_nonany_non--key_columnkey_column

Third Normal FormThird Normal Form

Source: Infosys Campus Connect Study Material

Third Normal FormThird Normal Form

Source: Infosys Campus Connect Study Material

Third Normal Form: MotivationThird Normal Form: Motivation

There are some situations where

BCNF is not dependency preserving andBCNF is not dependency preserving, and

efficient checking for FD violation on updates is important

Solution: define a weaker normal form called Third Normal Form (3NF)Solution: define a weaker normal form, called Third Normal Form (3NF)

Allows some redundancy (with resultant problems; we will see examples

later)later)

But functional dependencies can be checked on individual relations without

computing a join.p g j

There is always a lossless-join, dependency-preserving decomposition into

3NF.

Mihir
Highlight

Testing for 3NFTesting for 3NF

Optimization: Need to check only FDs in F, need not check all FDs in F+.

Use attribute closure to check for each dependency α → β, if α is a superkey.p y β, p y

If α is not a superkey, we have to verify if each attribute in β is contained in a

candidate key of R

3NF Decomposition Algorithm3NF Decomposition Algorithm
Let F be a canonical cover for F;Let Fc be a canonical cover for F;

i := 0;

for each functional dependency α → β in Fc do

if none of the schemas Rj, 1 ≤ j ≤ i contains α β

then begin

i i 1i := i + 1;

Ri := α β

end

if none of the schemas Rj, 1 ≤ j ≤ i contains a candidate key for R

then begin

i := i + 1;

Ri := any candidate key for R;

endend

return (R1, R2, ..., Ri)

3NF Decomposition Algorithm (Cont.)3NF Decomposition Algorithm (Cont.)

Above algorithm ensures:

each relation schema Ri is in 3NF

decomposition is dependency preserving and lossless-joindecomposition is dependency preserving and lossless join

3NF Decomposition: An Example3NF Decomposition: An Example
Relation schema:

cust_banker_branchcust_banker_branch = = ((customer_idcustomer_id, , employee_idemployee_id, , branch_namebranch_name, type , type))

Th f ti l d d i f thi l ti hThe functional dependencies for this relation schema are:

1.1. customer_idcustomer_id, , employee_idemployee_id →→ branch_namebranch_name, type, type

22 employee idemployee id →→ branch namebranch name2.2. employee_idemployee_id →→ branch_namebranch_name

3.3. customer_idcustomer_id, , branch_namebranch_name →→ employee_idemployee_id

We first compute a canonical coverp

branch_name is extraneous in the r.h.s. of the 1st dependency

No other attribute is extraneous, so we get FFC C ==

customer_idcustomer_id, , employee_idemployee_id →→ typetype

employee_idemployee_id →→ branch_namebranch_name

customer_idcustomer_id, , branch_namebranch_name →→ employee_idemployee_id

3NF Decompsition Example (Cont.)3NF Decompsition Example (Cont.)
The for loop generates following 3NF schema:

((customer_idcustomer_id,, employee_idemployee_id,, typetype))

((employee_idemployee_id,, branch_namebranch_name))

((customer_idcustomer_id,, branch_namebranch_name,, employee_idemployee_id))
Observe that (customer_id, employee_id, type) contains a candidate key of the
original schema, so no further relation schema needs be addedoriginal schema, so no further relation schema needs be added

If the FDs were considered in a different order, with the 2nd one considered after the 3rd,
(employee_id, branch_name)

would not be included in the decomposition because it is a subset ofwould not be included in the decomposition because it is a subset of
(customer_id, branch_name, employee_id)

Minor extension of the 3NF decomposition algorithm: at end of for loop, detect and delete
schemas such as (employee id branch name) which are subsets of other schemasschemas, such as (employee_id, branch_name), which are subsets of other schemas

result will not depend on the order in which FDs are considered
The resultant simplified 3NF schema is:

(customer id employee id type)(customer_id, employee_id, type)

(customer_id, branch_name, employee_id)

Comparison of BCNF and 3NFComparison of BCNF and 3NF
R l ti i BCNF d 3NFRelations in BCNF and 3NF

Relations in BCNF: no repetition of information

R l i i 3NF bl f i i f i f iRelations in 3NF: problem of repetition of information

Decomposition in BCNF and in 3NF

It is always possible to decompose a relation into relations in 3NF and

the decomposition is lossless

dependencies are preserved

It is always possible to decompose a relation into relations in BCNF

dand

the decomposition is lossless

May some of the dependencies are not preserved.

Multivalued Dependencies (MVDs)Multivalued Dependencies (MVDs)

Functional dependencies rule out certain tuples from appearing in a relation.

If A B, then we cannot have two tuples with the same A value but different B

values.

Multivalued dependencies do not rule out the existence of certain tuples.

Instead, they require that other tuples of a certain form be present in the, y q p p

relation.

Every functional dependency is also a multivalued dependency

Multivalued Dependencies (MVDs)Multivalued Dependencies (MVDs)

Let R be a relation schema and let α ⊆ R and β ⊆ R. The multivalued

dependency

αα →→→→ ββ

holds on R if in any legal relation r(R), for all pairs for tuples t1 and t2 in r suchy g (), p p 1 2

that t1[α] = t2 [α], there exist tuples t3 and t4 in r such that:

tt11[[αα] =] = tt2 2 [[αα] =] = tt33 [[αα] =] = tt44 [[αα]]

tt33[[ββ] =] = tt1 1 [[ββ]]

tt33[[R R –– ββ] =] = tt22[[R R –– ββ]]

tt4 4 [[ββ] =] = tt22[[ββ]]

tt44[[R R –– ββ] =] = tt11[[R R –– ββ]]

MVD (Cont.)MVD (Cont.)

Tabular representation of αα →→→→ ββ

MVD (Cont.)MVD (Cont.)

Trivial MVD

If MVD X Y is satisfied by all relations whose schemas include X and Y, it is

ll d t i i l MVD X Y i t i i l hcalled trivial MVD. X Y is trivial whenever

Inference Rules for Computing DInference Rules for Computing D++

Inference Rules for Computing DInference Rules for Computing D++

Use of Multivalued DependenciesUse of Multivalued Dependencies

We use multivalued dependencies in two ways:

1. To test relations to determine whether they are legal under a given set of

functional and multivalued dependencies

2. To specify constraints on the set of legal relations. We shall thus concern

ourselves only with relations that satisfy a given set of functional andourselves only with relations that satisfy a given set of functional and

multivalued dependencies.

If a relation r fails to satisfy a given multivalued dependency, we can construct a

relations r′ that does satisfy the multivalued dependency by adding tuples to r.

Merits of NormalizationMerits of Normalization
N li ti i b d th ti l f d tiNormalization is based on a mathematical foundation.

Removes the redundancy to a greater extent. After 3NF, data redundancy is

minimized to the extent of foreign keysminimized to the extent of foreign keys.

Removes the anomalies present in INSERTs, UPDATEs and DELETEs.

Demerits of NormalizationDemerits of Normalization
D t t i l SELECT ti f ill b l ff t dData retrieval or SELECT operation performance will be severely affected.

Normalization might not always represent real world scenarios.

Source: Infosys Campus Connect Study Material

Source: Infosys Campus Connect Study Material

Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan

