Relational Database
Design

COMPILED BY: RITURAJ JAIN

The Banking Schema

branch = (branch _name, branch_city, assets)

customer = (customer _id, customer_name, customer_street,

customer_city)

account = (account_number, balance)

depositor = (customer _id, account _number)

loan = (loan_number, amounf)

borrower = (customer id, loan number)

Pitfalls in Relational Database Design

®m Relational database design requires that we find a “good” collection of

relation schemas. A bad design may lead to
Repetition of Information.
Inability to represent certain information.
m Design Goals:

Avoid redundant data

Ensure that relationships among attributes are represented

Facilitate the checking of updates for violation of database

integrity constraints.

Example

Consider the relation schema for loan:
Lending-schema = (branch-name, branch-city, assets,
customer-name, loan-number, amount)

B_name B_city assets Cust_name L no | Amount
Coll_Road | Nadiad 9000000 | Ajay L 21 21000
Coll_Road | Nadiad 9000000 | Suresh L 23 26500
C.G. Road | Ahmedabad | 2574000 | Suresh L 43 2300
Raj Marg | Surat 2563000 | Ajay L 100 74500
Raj Marg | Surat 2563000 | Rakshita L 45 100000
Redundancy:

Data for branch-name,

branch makes
Wastes space

Complicates updating, introducing possibility of inconsistency of assets value

Null values

Cannot store information about a branch if no loans exist

Can use null values, but they are difficult to handle.

branch-city, assets are repeated for each loan that a

Goal — Devise a Theory for the Following

m Decide whether a particular relation R is in “good” form.

B In the case that a relation R is not in “good” form, decompose it into a

set of relations {R,, R, ..., R} such that
each relation is in good form

the decomposition is a lossless-join decomposition

Decomposition

®m Decompose the relation schema Lending-schema into:
Branch-schema = (branch-name, branch-city,assets)

B_name B_city assets Cust_name
Coll_Road | Nadiad 9000000 | Ajay
Coll_Road | Nadiad 9000000 | Suresh
C.G. Road | Ahmedabad | 2574000 | Suresh
Raj Marg Surat 2563000 | Ajay
Raj Marg Surat 2563000 | Rakshita

Loan-info-schema = (customer-name, loan-number,
branch-name, amount)

Cust_name L no Amount
Ajay L 21 21000
Suresh L 23 26500
Suresh L 43 2300
Ajay L 100 74500
Rakshita L 45 100000

Decomposition

B Sometimes it is required to reconstruct loan relation from the Branch-schema

and Loan-info-schema: so we can do this by

Branch-schema [><] Loan-info-schema

B _name B _city assets Cust_name L _no Amount
Coll_Road Nadiad 9000000 | Ajay L 21 21000
Coll_Road Nadiad 9000000 | Ajay L 100 74500
Coll_Road Nadiad 9000000 | Suresh L 23 26500
Coll_Road Nadiad 9000000 | Suresh L 43 2300
C.G. Road Ahmedabad 2574000 | Suresh L 23 26500
C.G. Road Ahmedabad 2574000 | Suresh L 43 2300
Raj Marg Surat 2563000 | Ajay L 21 21000
Raj Marg Surat 2563000 | Ajay L 100 74500
Raj Marg Surat 2563000 | Rakshita L 45 100000

m Which customer are borrowers of from which branch? (lost information)

Decomposition

In the last example we are not able to identify which customers are

borrower from which branch.
because of this loss of information
This type of decomposition is called lossy decomposition.

A decomposition that is not a lossy-join decomposition is called lossless

join decomposition.

So lossy join decomposition is a bad database design.

Decomposition

m All attributes of an original schema (R) must appear in the decomposition

®m Lossless-join decomposition.

For all possible relations r on schema R

r=IIg; (NP> gy (N> Tlg3 (N D<A wnnrnnnnen. > 1gp (1)

What is Normalization?

« Database designed based on the E-R model may have some amount of
— Inconsistency
— Uncertainty
— Redundancy

To eliminate these draw backs some refinement has to be done on the database.

— Refinement process is called Normalization

— Defined as a step-by-step process of decomposing a complex relation into
a simple and stable data structure.

— The formal process that can be followed to achieve a good database
design

— Also used to check that an existing design i1s of good quality
— The different stages of normalization are known as “normal forms”

— To accomplish normalization we need to understand the concept of
Functional Dependencies.

Source: Infosys Campus Connect Study Material

Need for Normalization

Student_Course_Result Table

Student_Details Course_Details Result_Details
101 Davis 11/4/11986 | M4 Applied Mathematics Basic Mathematics [111172004 g2 A
102 Daniel 11/6M1987 | M4 Applied Mathematics Basic Mathematics [111172004 62 C
101 Dawvis 11/4/11986 | H& American History 4 1172272004 M B
103 Sandra 107211988 | C3 Bio Chemistry Basic Chemistry 11 111672004 63 B
104 Ewelyn 22211386 | B3 Botany i 11/26/2004 7T B
102 Daniel 1161387 | P& Nugclear Physics Basic Physics 13 111272004 B4 B
103 Susan B985 | P3 Muclear Physics Basic Physics 13 111272004 83 A
103 Sandra 10721988 | B4 Zoology 3 1172712004 4 D
103 Susan 8311985 | He American History 4 1172272004 ar A
104 Ewvelyn 2221386 | M4 Applied Mathematics Basic Mathematics [111172004 63

» Data Duplication * Insert Anomaly
* Delete Anomaly * Update Anomaly

Source: Infosys Campus Connect Study Material

Need for Normalization

* Duplication of Data — The same data is listed in multiple lines of the
database

e Insert Anomaly — A record about an entity cannot be inserted into the
table without first inserting information about another entity — Cannot enter a
student details without a course details

* Delete Anomaly — A record cannot be deleted without deleting a record
about a related entity. Cannot delete a course details without deleting all of
the students’ information.

« Update Anomaly - Cannot update information without changing
iInformation in many places. To update student information, it must be

updated for each course the student has placed

Desirable Properties of Decomposition

1. We'll take another look at the schema
Lending-schema = (B_name, assets, B_city, L_no, cust_name,amount)

which we saw was a bad design.

2. The set of functional dependencies we required to hold on this schema
was:

B _name — assets B_city
L _no — amount B_name

3. If we decompose it into
Branch-schema = (B_name, assets, B_city)
Loan-info-schema = (B_name, L _no, amount)
Borrow-schema = (cust_name, L_no)
we claim this decomposition has several desirable properties.

Desirable Properties of Decomposition

a) Lossless Decomposition
b) Dependency Preservation

c) Repetition of information

Desirable Properties of Decomposition

a) Lossless Decomposition

How can we decide whether a decomposition is lossless?
® Let R be arelation schema.

®m Let F be a set of functional dependencies on R.

® Let R1 and R2 form a decomposition of R.

B The decomposition is a lossless-join decomposition of R if at least

one of the following functional dependencies are in F*:

(a) R1 N R2 —» R1
(b) R1 N R2 —» R2

Example
a) Lossless Decomposition
m R=(AB,C)
F={A—>B,B— C)
Can be decomposed in two different ways
" R, =(AB), R,=(B,C)

Lossless-join decomposition:

Dependency preserving
M R1 = (A, B)! R2 = (A, C)

Lossless-join decomposition:

Not dependency preserving

(cannot check B — C without computing R, X R,)

Desirable Properties of Decomposition

a) Lossless Decomposition
Example:

®m First we decompose Lending-schema into Branch-schema and

Loan-info-schema
Lending-schema = (B_name, assets, B_city, L _no, cust_name,amount)
Branch-schema = (B_name, B_city, assets)
Loan-info-schema = (B_name, cust_name, L_no, amount)

m B name > assets B_city, the augmentation rule for functional

dependencies implies that B name — B _name assets B_city

B Since Branch-schema N Loan-info-schema = B name, our

decomposition is lossless join.

a)

Desirable Properties of Decomposition

Lossless Decomposition

Example Continue:

Next we decompose Loan-info-schema into Loan-schema and

Borrow-schema
Loan-info-schema = (B_name, cust_name, L_no, amount)
Loan-schema = (B_name, L_no, amount)
Borrow-schema = (cust_name, L_no)

As L_no is the common attribute, and

L no— L _no amount B_name

This is also a lossless-join decomposition.

Desirable Properties of Decomposition

b) Dependency Preservation
d Check that updates to the database do not result in illegal relations
O Better to check updates without having to compute natural joins.

d To know whether joins must be computed, we need to determine what
functional dependencies may be tested by checking each relation

individually.

d Let F be a set of functional dependencies on schema R. Let {R,R,, . .

.,R.} be a decomposition of R.

d The restriction of F to R; is the set of all functional dependencies(

denoted as F)) in F* that include only attributes of R,.

Desirable Properties of Decomposition

b) Dependency Preservation
a F,,F,, .. .,F,is the set of dependencies of decomposed relations.
OF=F,UF,U...UF,

0 When a relational schema R defined by functional dependency F is
decomposed into {R,R,, . . .,,R.}, each functional dependency should be

testable by at least one of R,.

dFormally, let F* be the closure F and let F’* be the closure of

dependencies covered by R,

d F* == F’* for dependency preservation.

Testing for Dependency Preservation

b) Dependency Preservation
compute F*
for each schema R, in D do
begin
F, := the restriction of F*to R, ;
end
FF=0
for each restriction F; do
begin
FF=F UF,
end
compute F* ;
if (F*=F*) then return (true)

else return (false);

Testing for Dependency Preservation

b) Dependency Preservation
Lending-schema = (B_name, assets, B_city, L_no, cust_name,amount)
Decomposed into these schemas:
Branch-schema = (B_name, assets, B_city)
Loan-info-schema = (B_name, L_no, amount)
Borrow-schema = (cust_name, L_no)

Decomposition of Lending-schema is dependency preserving.

B _name - assets B_city
L no - amount B_name

Desirable Properties of Decomposition

c) Repetition of Information

0 Our decomposition does not suffer from the repetition of information

problem.
O Branch and loan data are separated into distinct relations.
d Thus we do not have to repeat branch data for each loan.

3 If a single loan is made to several customers, we do not have to repeat

the loan amount for each customer.
3 This lack of redundancy is obviously desirable.

0 We will see how this may be achieved through the use of normal

forms.

Functional dependency

In a given relation R, X and Y are attributes. Atiribute Y Is functionally
dependent on attribute X if each value of X determines EXACTLY ONE

value of Y, which Is represented as X -> Y (X can be composite in nature).

We say here “x determines y" or “y is functionally dependent on x”
X—Y does not imply Y—X

If the value of an attribute *Marks” is known then the value of an attribute
‘Grade” is determined since Marks— Grade

Types of functional dependencies:

— Full Functional dependency
— Partial Functional dependency
— Transitive dependency

Source: Infosys Campus Connect Study Material

Functional dependency

Consider the following Relation

REPORT (STUDENT# COURSE#, CourseName, IName, Room#, Marks,
Grade)

« STUDENT# - Student Number

« COURSE# - Course Number
* CourseName - Course Name
« |Name - Name of the Instructor who delivered the course

+ Room# - Room number which i1s assigned to respective Instructor
* Marks - Scored in Course COURSE# by Student STUDENT#

+ Grade - obtained by Student STUDENT# in Course COURSE#

Source: Infosys Campus Connect Study Material

Functional dependency

STUDENT# COURSE# = Marks
COURSE# = CourseName,

COURSE# = IName (Assuming one course is taught by one and only one
Instructor)

IName = Room# (Assuming each Instructor has his/her own and non-
shared room)

Marks = Grade

Source: Infosys Campus Connect Study Material

Dependency Diagram

Report(S#,C# SName,CTitle,LName,Room# Marks,Grade)

« S# —=> SName Sﬁ Ct't

+ C# - CTitle, Ve AN N

« C# —> LName / \

+ LName = Room# CTitle

+ C# - Room# SName

. S# C# > Marks [LName

« Marks = Grade l

. S#C# > Grade Marks — Grade |
Room#

Assumptions:

Each course has only one lecturer and each lecturer has a room.
Grade is determined from Marks.

Source: Infosys Campus Connect Study Material

Full Dependency

X and Y are attributes.
X Functionally determines Y
Note: Subset of X should not functionally determine Y

Conuden

Marks

Cnume@;f

Source: Infosys Campus Connect Study Material

Partial Dependency

X and Y are attributes.

Attribute Y is partially dependent on the attribute X only if it is dependent

on a sub-set of attribute X.

i —

(" Student#

f},—-' -
(ourses

- N

ourseNam]

Source: Infosys Campus Connect Study Material

Transitive Dependency

X Yand Z are three attribufes.
X->Y

Y-> 2

=>X->2

Name Room#

Source: Infosys Campus Connect Study Material

First Normal Form

® Domain is atomic If its elements are considered to be indivisible units

Examples of non-atomic domains:
» Set of names, composite attributes
» Identification numbers like CS101 that can be broken up into parts

®m A relational schema R is in first normal form if the domains of all attributes of R
are atomic

® Non-atomic values complicate storage and encourage redundant (repeated)
storage of data

First Normal Form (Cont’d)

+ Arelation schemais in 1NF :
— If and only If all the attnbutes of the relation R are atomic in nature.

— Atomic: the smallest level to which data may be broken down and remain
meaningful

Source: Infosys Campus Connect Study Material

Example ... Without Normalization

Student_Course_Result Table

Student_Details Course_Details Result_Details
101 Davis 11/4/11986 | M4 Applied Mathematics Basic Mathematics [111172004 g2 A
102 Daniel 11/6M1987 | M4 Applied Mathematics Basic Mathematics [111172004 62 C
101 Dawvis 11/4/11986 | H& American History 4 1172272004 M B
103 Sandra 107211988 | C3 Bio Chemistry Basic Chemistry 11 111672004 63 B
104 Ewvelyn 2i2211386 | B3 Botany i 1172672004 T B
102 Daniel 11/6/198T | P3 Muclear Physics Basic Physics 13 111272004 68 B
103 Susan B985 | P3 Muclear Physics Basic Physics 13 111272004 83 A
103 Sandra 10211388 | B4 Zoology 3 1172772004 4 D
105 Susan 8311985 | HE American History 4 1172272004 87 A
104 Ewvelyn 2221986 | M4 Applied Mathematics Basic Mathematics [111172004 B3

Source: Infosys Campus Connect Study Material

Table in 1NF

Source: Infosys Campus Connect Study Material

Student_Course_ Result Table

101 | Davis 04-Nov-1286 M4 Applie!:athematics Basic Mathematics 7 | 11-Nov-2004 8z | A
Applied

102 | Damiel 06-Nov-1286 M4 Mathematics Basic Mathematics 7 | 11-Nov-2004 62 | C

101 | Davis 04-Mov-15386 HE& American History 4 | 22-Nov-2004 T8 | B

103 | Sandra | 02-Oet-1988 Cc3 Bio Chemistry Basic Chemistry 11 | 16-Nowv-2004 B3 | B

104 | Evelyn 22-Feb-1386 B3 Botany 8 | 26-Nov-2004 T | B

102 | Damiel 06-Mowv-13286 P3 NHuclear Physics Basic Physics 13 | 12-Nov-2004 B8 | B

103 | Susan H-Aug-19835 P3 Nuclear Physics Basic Physics 13 | 12-Now-2004 B | A

103 | Sandra 02-Dit-1988 B4 Loalogy 3 | 2T-Mow-2004 4 | D

103 | Susan H1-Aug-1983 HE& American History 4 | 22-Mov-2004 ar .Flf \
Applied ﬁ)é:‘;um

104 | Ewvelyn 22-Feb-1386 M4 Mathematics Basic Mathematics T | 11-Now-2004 5] Researcl

First Normal Form Example

Course_Pref Table

Dept Prof Course Pref

Course Course_dept

101 CS

Rajiv 102 CS

103 EC

CE 101 CS

102 CS

Mahesh 103 EC

104 EC

101 CS

CL Ruchika 103 EC

106 EE

103 EC

104 EC

IT Rajesh 106 EE

102 CS

105 EE

First Normal Form Example

Course_Pref_Table

Dept Prof Course Course_dept
CE Rajiv 101 CS
CE Rajiv 102 CS
CE Rajiv 103 EC
CE Mahesh 101 CS
CE Mahesh 102 CS
CE Mahesh 103 EC
CE Mahesh 104 EC
CL Ruchika 101 CS
CL Ruchika 103 EC
CL Ruchika 106 EE
IT Rajesh 103 EC
IT Rajesh 104 EC
IT Rajesh 106 EE
IT Rajesh 102 CS
IT Rajesh 105 EE

Second normal form: 2NF

« A Relation is said to be in Second Normal Form if and only if :
— It is in the First normal form, and

— No partial dependency exists between non-key attributes and Key
attributes.

. An attrnibute of a relation R that belongs to any key of R i1s said to be a
prime attribute and that which doesn't is a non-prime attribute

To make a table 2NF compliant, we have to remove all the partial dependencies

Note : - All partial dependencies are eliminated

Source: Infosys Campus Connect Study Material

Prime Vs Non-Prime Attributes

» An attribute of a relation R that belongs to any key of R is said to be a prime attribute and that
which doesn’t is a non-prime attribute

Report(S#, C#, StudentName, DateOfBirth, CourseName, PreRequisite, DurationinDays,
DateOfExam, Marks, Grade)

Student #

Is a PRIME Attribute

Student Name
Date of Birth
CourseName
Prerequisite

Iiarks
Grade
DurationInDavs

DateOfExam

Source: Infosys Campus Connect Study Material

Second normal form: 2NF

« STUDENT# Is key attribute for Student,
« COURSE= Is key attribute for Course

« STUDENT# COURSEZ# together form the composite key attributes for Results
relationship.

« Other attributes like StudentName (Student Name), DateofBirth, CourseName,
PreRequisite, DurationinDays, DateofExam, Marks and Grade are non-key
aftributes.

To make this table 2NF compliant, we have to remove all the partial
dependencies.

Student #, Course# -> NMarks, Grade
Student# -> StudentName, DOB,
Course# -> CourseName, Prerequiste, DurationlnDays

Course# -> Date of Exam

Source: Infosys Campus Connect Study Material

Second normal form: 2NF

— Marks

— Grade

Fully Functionally
dependent on composite
Candidate key

SH

Partial Dependency

Partial Dependency

—_—— StudentName
SF — DOB
C# —_— CourseName
Cit —— Prerequusite
C# — Duration
C# — DateQOfExam

%

/’

Partial Dependency

Source: Infosys Campus Connect Study Material

Second normal form: Table in 2NF

STUDENT TABLE COURSE TABLE

Student# StudentName DateofBirth Course Pre Duration
Name Requisite InDays
S st temdue s M1 Basic Mathematics 11

102 | Daniel 06-Nov-1987
M4 Applied Mathematics | M1 7

103 | Sandra 02-Oct-1988
HB American History 4

104 | Evelyn 22-Feb-1986
C1 Basic Chemistry 5

105 | Susan 31-Aug-1985
C3 Bio Chemistry C1 11

106 | Mike 04-Feb-1987
B3 Botany il

107 | Juliet 09-Nov-1986
e i P1 Basic Physics 8

108 | Tom 07-Oct-1986
P3 Muclear Physics P1 ~=43

109 | Catherine 06-Jun-1984 B4 Zoology ‘jfﬁu

Source: Infosys Campus Connect Study Material

Second normal form: Table in 2NF

Student# Course# Marks Grade Exam_Date Table
101 | M4 82 | A Course# DateOfExam
102 | M4 62| C M4 11-Nov-04
101 | H6 79| B

H6 22-Nov-04
103 | C3 65| B
104) 83 L C3 16-Nov-04
102 | P3 68 | B
105 | P3 89 A B3 26-Nov-04
103 | B4 54 | D
105 | H6 87 | A P3 12-Nov-04
104 | M4 65| B

B4 27-Nov-04

Source: Infosys Campus Connect Study Material

Second normal form ... Example

Example: The following relation is in First Normal Form, but not Second

Normal Form: Cust_Order_table
OrderNo Customer ContactPerson Total
1 Acme Widgets John Doe $134.23
2 ABC Corporation Fred Flintstone $521.24
3 Acme Widgets John Doe $1042.42
4 Acme Widgets John Doe $928.53

OrderNo Customer - Total

Customer 2 ContactPerson

Second normal form ... Example

Customer table

Customer

ContactPerson

Acme Widgets

John Doe

ABC Corporation

Fred Flintstone

Order_table
OrderNo Customer Total
1 Acme Widgets $134.23
2 ABC Corporation | $521.24
3 Acme Widgets |$1042.42
4 Acme Widgets $928.53

Customer - ContactPerson

OrderNo Customer - Total

Boyce-Codd Normal Form

A relation schema R is in BCNF with respect to a set F of functional dependencies if
for all functional dependencies in F* of the form
oa—>pf

where a. < R and S c R, at least one of the following holds:

m o — fistrivial (i.e., fc o)

® o is asuperkey for R

Example schema not in BCNF:
bor_loan = (customer_id, loan_number, amount)

because loan_number — amount holds on bor _loan but loan_number is not a

superkey

Decomposing a Schema into BCNF

m Suppose we have a schema R and a non-trivial dependency o — £ causes a

violation of BCNF.

We decompose R into:

(aUB)
(R-(f-a))
® In our example,
o = loan_number
= amount
and bor_loan is replaced by
(o U B)=(loan_number, amount)

(R-(f-0a))=(customer_id, loan_number)

Decomposing a Schema into BCNF

m Lending-schema = (B_name, assets, B_city, L_no, cust_name,amount)

B _name -2 assets B_city (not trivial and B_name is not a super key)

L _no - amount B_name (not trivial and L_no is not a super key)

Candidate key for this Schema is { L_no, cust_name}. This Schema is not in

BCNF form. So decompose this schema into below given two schemas
Branch-schema = (B_name, B_city, assets)
Loan-info-schema = (B_name, cust_name, L_no, amount)

m B name > assets B_city, the augmentation rule for functional dependencies

implies that B_name — B_name assets B_city

® B_name is super key in Branch_schema.

Decomposing a Schema into BCNF

Loan-info-schema = (B_name, cust_name, L_no, amount)
L _no - amount B_name (not trivial and L_no is not a super key)

m This Schema is not in BCNF form. So decompose this schema into below

given two schemas
Loan-schema = (B_name, L_no, amount)
Borrow-schema = (cust_name, L_no)
m Both of these two schemas are in BCNF.

m Decomposition of Lending-schema to all these three schema
Branch-schema, Loan-schema and Borrow-schema having dependency

preservation and lossless decomposition.

BCNF and Dependency Loss...Example

banker-schema = (branch-name, customer-name, banker-name)
banker-name - branch-name
branch-name customer-name -> banker-name
Banker-schema is not in BCNF -- Why?
banker-name is not a super key. So decompose banker-schema.....
banker-branch-schema = (banker-name, branch-name)
customer-banker-schema = (customer-name, banker-name)
New schema in BCNF but only one dependency is preserves
banker-name - branch-name

While other dependency is not preserve.

Testing for BCNF

To check if a non-trivial dependency o —4 causes a violation of BCNF
1. compute a* (the attribute closure of «), and
2. verify that it includes all attributes of R, that is, it is a superkey of R.
Simplified test: To check if a relation schema R is in BCNF, it suffices to check
only the dependencies in the given set F for violation of BCNF, rather than
checking all dependencies in F*,
If none of the dependencies in F causes a violation of BCNF, then none of
the dependencies in F* will cause a violation of BCNF either,
However, using only F is incorrect when testing a relation Iin a
decomposition of R
ConsiderR=(A,B,C,D, E), withF={A - B, BC - D}
Decompose R into R, =(A,B) and R, =(A,C,D, E)
Neither of the dependencies in F contain only attributes from
(A,C,D,E) so we might be mislead into thinking R, satisfies BCNF.
In fact, dependency AC — D in F* shows R, is not in BCNF.

Testing Decomposition for BCNF

® To check if a relation R; in a decomposition of R is in BCNF,

Either test R, for BCNF with respect to the restriction of F (i.e. F;) to R, (that

IS, all FDs in F* that contain only attributes from R)

Third Normal Form

m A relation schema R is in third normal form (3NF) if for all:

a—>pfin F

at least one of the following holds:
a — gis trivial (i.e., S € a)
o is a superkey for R
Each attribute A in (f— o) is contained in a candidate key for R.
(NOTE: each attribute may be in a different candidate key)

m If a relation is in BCNF it is in 3NF (since in BCNF one of the first two

conditions above must hold).

®m Third condition is a minimal relaxation of BCNF to ensure dependency

preservation.

Mihir
Highlight

Third Normal Form

A relation R is said to be in the Third Normal Form (3NF) if and only if
— Itis in 2NF and

— No transitive dependency exists between non-key attributes and
key attributes.

« STUDENT# and COURSE# are the key
attnbutes.

» All other attributes, except grade are non-
partially, non-transitively

dependent on key attributes.

* Student#, Course# - > Marks
Marks -> Grade S#,CF wmme Marks e Grade

SN—

Note : - All transitive dependencies are eliminated ‘ &

Source: Infosys Campus Connect Study Material

Third Normal Form

Note that 3NF is concerned with transitive dependencies which do not involve
candidate keys. A 3NF relation with more than one candidate key will clearly

have transitive dependencies of the form:

primary_key - other_candidate_key - any_non-key_column

Third Normal Form

Student# Course# Marks Grade
101 | M4 82 A
102 | M4 62 |C
101 | H6 79 | B
103 | C3 65| B
104 | B3 77 | B
102 | P3 68 | B
105 | P3 89 A
103 | B4 54 | D
105 | H6 87 | A
104 | M4 65| B

Source: Infosys Campus Connect Study Material

Third Normal Form

Student# Course# Marks MARKSGRADE TABLE
UpperBound LowerBound Grade

101 | M4 82
102 | M4 62 100 95 | A+

101 | H6 79
94 85 A

103 | C3 65
104 | B3 77 84 70 | B
102 | P3 68 69 65 | B-
105 P3 89 64 55| C

103 | B4 54
54 45|D

105 | H6 87
44 0E

104 | M4 65

Source: Infosys Campus Connect Study Material

Third Normal Form: Motivation

® There are some situations where
BCNF is not dependency preserving, and
efficient checking for FD violation on updates is important
®m Solution: define a weaker normal form, called Third Normal Form (3NF)

Allows some redundancy (with resultant problems; we will see examples

later)

But functional dependencies can be checked on individual relations without

computing a join.

There is always a lossless-join, dependency-preserving decomposition into

3NF.

Mihir
Highlight

Testing for 3NF

Optimization: Need to check only FDs in F, need not check all FDs in F*.
Use attribute closure to check for each dependency o — B, if a is a superkey.

If o is not a superkey, we have to verify if each attribute in B is contained in a

candidate key of R

3NF Decomposition Algorithm

Let F. be a canonical cover for F;
| :=0;
for each functional dependency a — £in F. do
if none of the schemas R;, 1 <] <icontains a f
then begin
=1 +1;
R, =ap
end

if none of the schemas R;

j 1 <} <icontains a candidate key for R

then begin
=1 + 1;
R; := any candidate key for R;
end
return (R, R,, ..., Rj)

3NF Decomposition Algorithm (Cont.)

® Above algorithm ensures:
each relation schema R; is in 3NF

decomposition is dependency preserving and lossless-join

3NF Decomposition: An Example

®m Relation schema:

cust_banker_branch = (customer _id, employee id, branch_name, type)

® The functional dependencies for this relation schema are:
customer_id, employee_id — branch_name, type
employee_id — branch_name
customer_id, branch_name — employee_id
m We first compute a canonical cover
branch_name is extraneous in the r.h.s. of the 15t dependency
No other attribute is extraneous, so we get F. =
customer_id, employee_id — type
employee_id — branch_name

customer_id, branch_name — employee_id

3NF Decompsition Example (Cont.)

The for loop generates following 3NF schema:
(customer_id, employee_id, type)

(employee id, branch_name)

(customer _id, branch_name, employee_id)
Observe that (customer _id, employee id, type) contains a candidate key of the
original schema, so no further relation schema needs be added
If the FDs were considered in a different order, with the 2"d one considered after the 31,
(employee id, branch_name)

would not be included in the decomposition because it is a subset of

(customer _id, branch_name, employee id)
Minor extension of the 3NF decomposition algorithm: at end of for loop, detect and delete
schemas, such as (employee id, branch_name), which are subsets of other schemas

result will not depend on the order in which FDs are considered
The resultant simplified 3NF schema is:

(customer _id, employee _id, type)

(customer _id, branch_name, employee_id)

Comparison of BCNF and 3NF

® Relations in BCNF and 3NF
Relations in BCNF: no repetition of information
Relations in 3NF: problem of repetition of information
m Decomposition in BCNF and in 3NF
It is always possible to decompose a relation into relations in 3NF and
» the decomposition is lossless
» dependencies are preserved

It is always possible to decompose a relation into relations in BCNF

and
» the decomposition is lossless

» May some of the dependencies are not preserved.

Multivalued Dependencies (MVDs)

® Functional dependencies rule out certain tuples from appearing in a relation.
If A B, then we cannot have two tuples with the same A value but different B

values.

m Multivalued dependencies do not rule out the existence of certain tuples.
Instead, they require that other tuples of a certain form be present in the

relation.

®m Every functional dependency is also a multivalued dependency

Multivalued Dependencies (MVDs)

m Let R be a relation schema and let o« < R and f < R. The multivalued

dependency
a—>—> P

holds on R if in any legal relation r(R), for all pairs for tuples t, and t, in r such

that t,[a] = t, [a], there exist tuples t; and t, in r such that:
tlo] = t[a] = 6 [a] =, [a]
t[B] = ¢ [B]
GIR - Bl = IR -]
t, [Pl = &[P]
t,[R - Bl = {[R - B]

®m Tabular representation of a »— 3

MVD (Cont.)

o 5 R-—o-p
1 | aq...4a; Ajy1--- 0] Ajy1---y
fz a1...04; b1'_|_1...b]' b]'_|_1...bn
b3 | ay...a; | @jeq---4; | bjoq...0,
Iy a1 ...4; bi+]...bj El]'+1 oy

MVD (Cont.)

Employee (E-name P-name D-name)
Smith X John
Smith Y Ann
Smith X Ann
Smith Y John

MVDs E-name — — P-name and E-name — — D-name

hold 1n the relation:

The employee named Smith works on projects X and Y.,
and has two dependents John and Ann.
m Trivial MVD

If MVD X =2-> Y is satisfied by all relations whose schemas include X and Y, it is

called trivial MVD. X ==Y is trivial whenevery < X or XuY=R

Inference Rules for Computing D*

D: aset of FDs and MVDs

D7 - the closure of D, the set of all FDs and MVDs logically
mmplied by D

sound and complete rules
1. reflexivity: if Y X then X—Y
2 angmentation: 1f X—Y then WX Y

3 transitivity: 1if X—Y and Y —7Z then X272

4 complementation: 1f X —— Y then X —— E— XY

L

Inference Rules for Computing D*

MV angmentation: if X —— Y and W E, VoW,

then WX —— VY

MV transitvity: if X — Y and Yo —Zthen X—»—72-Y

creplhication: if X—Y then X —— Y
~coalescence: if X==Y and ZY. WcR. WnYV= W=7,

then X2

Use of Multivalued Dependencies

® We use multivalued dependencies in two ways:

1. To test relations to determine whether they are legal under a given set of

functional and multivalued dependencies

2. To specify constraints on the set of legal relations. We shall thus concern
ourselves only with relations that satisfy a given set of functional and

multivalued dependencies.

m If a relation r fails to satisfy a given multivalued dependency, we can construct a

relations r’ that does satisfy the multivalued dependency by adding tuples to r.

Merits of Normalization

Normalization is based on a mathematical foundation.

Removes the redundancy to a greater extent. After 3NF, data redundancy is

minimized to the extent of foreign keys.

Removes the anomalies present in INSERTs, UPDATEs and DELETEs.

Demerits of Normalization

Data retrieval or SELECT operation performance will be severely affected.

Normalization might not always represent real world scenarios.

Summary of Normal Forms

Input Operation Qutput

Un-normalized Create separate rows or columns for .
. _ Table in T NF

Table every combination of multivalued columns
Table in 1T NF Eliminate Partial dependencies Tables in 2NF
Tables in 2 NF Eliminate Transitive dependencies Tables in 3 NF
Tables in 3 NE Eliminate Overlapping candidate key Tables in

columns BCNF L

Source: Infosys Campus Connect Study Material

Points to Remember:

Normal Form Test Remedy (Normalization)
1HF Relation should have atomic Form new relations for each non-atomic
attributes. The domain of an attribute

attribute must include only
atomic (simple, indivisibla)

values.

ZHF For relations where primary key Decompose and form a new relation for
contains multiple attributes oach partial key with its dependent
(composite primary key), non- attribute(s). Retain the relation with the
kay attribute should not be original primary key and any attributes
functionally dependent on a part that are fully functionally dependent on
of the primary kay. it.

IMF Relation should not have a non- Decompose and form a relation that
kay attribute functionally includes the non-key attribute(s) that
determined by another non-kay functionally determine(s) other non-key
attribute (or by a set of non-kay attribute(s).

attributes). In other words there
should be no transitive
dependency of a non-key
attribute on the primary key. =

Source: Infosys Campus Connect Study Material

Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan

