
Chapter 3: SQLChapter 3: SQL

Database System Concepts 5th EdDatabase System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 3: SQLChapter 3: SQL

Data Definition
Basic Query Structure
S t O tiSet Operations
Aggregate Functions
Null Values
Nested Subqueries
Complex Queries
ViewsViews
Modification of the Database
Joined Relations**

©Silberschatz, Korth and Sudarshan3.2Database System Concepts, 5th Ed., June 2006

HistoryHistory

IBM Sequel language developed as part of System R project at the
IBM San Jose Research Laboratory
Renamed Structured Query Language (SQL)Renamed Structured Query Language (SQL)
ANSI and ISO standard SQL:

SQL-86
SQL-89
SQL-92
SQL:1999 (language name became Y2K compliant!)
SQL:2003

Commercial systems offer most, if not all, SQL-92 features, plus
varying feature sets from later standards and special proprietary y g p p p y
features.

Not all examples here may work on your particular system.

©Silberschatz, Korth and Sudarshan3.3Database System Concepts, 5th Ed., June 2006

Data Definition LanguageData Definition Language

Allows the specification of:

The schema for each relation, including attribute types.
Integrity constraints
Authorization information for each relation.
Non-standard SQL extensions also allow specification of

The set of indices to be maintained for each relations.
The physical storage structure of each relation on diskThe physical storage structure of each relation on disk.

©Silberschatz, Korth and Sudarshan3.4Database System Concepts, 5th Ed., June 2006

Create Table ConstructCreate Table Construct

An SQL relation is defined using the create table command:
create table r (A1 D1, A2 D2, ..., An Dn,

(integrity-constraint1),(teg ty co st a t1),
...,
(integrity-constraintk))

r is the name of the relation
each Ai is an attribute name in the schema of relation r
Di is the data type of attribute Ai

Example:
create table branch

(branch_name char(15),
branch city char(30)branch_city char(30),
assets integer)

©Silberschatz, Korth and Sudarshan3.5Database System Concepts, 5th Ed., June 2006

Domain Types in SQLDomain Types in SQL

char(n). Fixed length character string, with user-specified length n.
varchar(n). Variable length character strings, with user-specified maximum
length n.g
int. Integer (a finite subset of the integers that is machine-dependent).
smallint. Small integer (a machine-dependent subset of the integer
domain type).
numeric(p,d). Fixed point number, with user-specified precision of p digits,
with n digits to the right of decimal point.
real, double precision. Floating point and double-precision floating point

b ith hi d d t i inumbers, with machine-dependent precision.
float(n). Floating point number, with user-specified precision of at least n
digits.
More are covered in Chapter 4More are covered in Chapter 4.

©Silberschatz, Korth and Sudarshan3.6Database System Concepts, 5th Ed., June 2006

Integrity Constraints on TablesIntegrity Constraints on Tables

not null
primary key (A1, ..., An)

Example: Declare branch_name as the primary key for branch
.

create table branch
(branch_name char(15),
branch_city char(30) not null,
assets integerassets integer,
primary key (branch_name))

primary key declaration on an attribute automatically ensures
not null in SQL-92 onwards, needs to be explicitly stated in

©Silberschatz, Korth and Sudarshan3.7Database System Concepts, 5th Ed., June 2006

SQL-89

Basic Insertion and Deletion of TuplesBasic Insertion and Deletion of Tuples

Newly created table is empty
Add a new tuple to account

i t i t tinsert into account
values ('A-9732', 'Perryridge', 1200)

Insertion fails if any integrity constraint is violatedInsertion fails if any integrity constraint is violated
Delete all tuples from account

delete from account
Note: Will see later how to delete selected tuples

©Silberschatz, Korth and Sudarshan3.8Database System Concepts, 5th Ed., June 2006

Drop and Alter Table ConstructsDrop and Alter Table Constructs

The drop table command deletes all information about the dropped
relation from the database.
The alter table command is used to add attributes to an existingThe alter table command is used to add attributes to an existing
relation:

alter table r add A D
h A i th f th tt ib t t b dd d t l ti d Dwhere A is the name of the attribute to be added to relation r and D

is the domain of A.
All tuples in the relation are assigned null as the value for the
new attributenew attribute.

The alter table command can also be used to drop attributes of a
relation:

alter table r drop A

where A is the name of an attribute of relation r

Dropping of attributes not supported by many databases

©Silberschatz, Korth and Sudarshan3.9Database System Concepts, 5th Ed., June 2006

pp g pp y y

Basic Query Structure Basic Query Structure

A typical SQL query has the form:

select A1, A2, ..., An1 2 n
from r1, r2, ..., rm
where P

Ai represents an attribute
Ri represents a relation
P is a predicate.

This query is equivalent to the relational algebra expression.

))((21,,, 21 mPAAA rrr
n

×××∏ KK σ
The result of an SQL query is a relation.

©Silberschatz, Korth and Sudarshan3.10Database System Concepts, 5th Ed., June 2006

The select ClauseThe select Clause

The select clause list the attributes desired in the result of a query
corresponds to the projection operation of the relational algebra

E l fi d th f ll b h i th l l tiExample: find the names of all branches in the loan relation:
select branch_name
from loan

In the relational algebra, the query would be:
∏branch_name (loan)

NOTE: SQL names are case insensitive (i.e., you may use upper- or
lower-case letters.)

E.g. Branch_Name ≡ BRANCH_NAME ≡ branch_name
Some people use upper case wherever we use bold font.p p pp

©Silberschatz, Korth and Sudarshan3.11Database System Concepts, 5th Ed., June 2006

The select Clause (Cont.)The select Clause (Cont.)

SQL allows duplicates in relations as well as in query results.
To force the elimination of duplicates, insert the keyword distinct after
selectselect.
Find the names of all branches in the loan relations, and remove
duplicates

select distinct branch nameselect distinct branch_name
from loan

The keyword all specifies that duplicates not be removedThe keyword all specifies that duplicates not be removed.

select all branch_name
from loan

©Silberschatz, Korth and Sudarshan3.12Database System Concepts, 5th Ed., June 2006

The select Clause (Cont.)The select Clause (Cont.)

An asterisk in the select clause denotes “all attributes”
select *
from loanfrom loan

The select clause can contain arithmetic expressions involving the
operation, +, –, ∗, and /, and operating on constants or attributes of
tuples.tup es
E.g.:

select loan_number, branch_name, amount ∗ 100
from loanfrom loan

©Silberschatz, Korth and Sudarshan3.13Database System Concepts, 5th Ed., June 2006

The where ClauseThe where Clause

The where clause specifies conditions that the result must satisfy
Corresponds to the selection predicate of the relational algebra.

T fi d ll l b f l d t th P id b h ithTo find all loan number for loans made at the Perryridge branch with
loan amounts greater than $1200.

select loan_number
from loanfrom loan
where branch_name = 'Perryridge' and amount > 1200

Comparison results can be combined using the logical connectives and,
or and notor, and not.

©Silberschatz, Korth and Sudarshan3.14Database System Concepts, 5th Ed., June 2006

The from ClauseThe from Clause

The from clause lists the relations involved in the query
Corresponds to the Cartesian product operation of the relational algebra.

Fi d th C t i d t b X lFind the Cartesian product borrower X loan
select ∗
from borrower, loan

Find the name, loan number and loan amount of all customers
having a loan at the Perryridge branch.

select customer name borrower loan number amountselect customer_name, borrower.loan_number, amount
from borrower, loan
where borrower.loan_number = loan.loan_number and

branch_name = 'Perryridge'

©Silberschatz, Korth and Sudarshan3.15Database System Concepts, 5th Ed., June 2006

The Rename OperationThe Rename Operation

SQL allows renaming relations and attributes using the as clause:
old-name as new-name

E Fi d th l b d l t f ll tE.g. Find the name, loan number and loan amount of all customers;
rename the column name loan_number as loan_id.

select customer_name, borrower.loan_number as loan_id, amount
from borrower, loan
where borrower.loan_number = loan.loan_number

©Silberschatz, Korth and Sudarshan3.16Database System Concepts, 5th Ed., June 2006

Tuple VariablesTuple Variables

Tuple variables are defined in the from clause via the use of the as
clause.
Find the customer names and their loan numbers and amount for allFind the customer names and their loan numbers and amount for all
customers having a loan at some branch.

select customer_name, T.loan_number, S.amount

Find the names of all branches that have greater assets than

_ _
from borrower as T, loan as S
where T.loan_number = S.loan_number

g
some branch located in Brooklyn.

select distinct T.branch_name
from branch as T, branch as S

here T assets > S assets and S branch cit 'Brookl n'where T.assets > S.assets and S.branch_city = 'Brooklyn'

Keyword as is optional and may be omitted
borrower as T ≡ borrower T

Some database such as Oracle require as to be omitted

©Silberschatz, Korth and Sudarshan3.17Database System Concepts, 5th Ed., June 2006

Some database such as Oracle require as to be omitted

String OperationsString Operations

SQL includes a string-matching operator for comparisons on character
strings. The operator “like” uses patterns that are described using two
special characters:p

percent (%). The % character matches any substring.
underscore (_). The _ character matches any character.

Find the names of all customers whose street includes the substringFind the names of all customers whose street includes the substring
“Main”.

select customer_name
from customer

h t t t lik '% M i %' where customer_street like '% Main%'

Match the name “Main%”
like 'Main\%' escape '\'

SQL supports a variety of string operations such as
concatenation (using “||”)
converting from upper to lower case (and vice versa)

©Silberschatz, Korth and Sudarshan3.18Database System Concepts, 5th Ed., June 2006

finding string length, extracting substrings, etc.

Ordering the Display of TuplesOrdering the Display of Tuples

List in alphabetic order the names of all customers having a loan in
Perryridge branch

select distinct customer nameselect distinct customer_name
from borrower, loan
where borrower loan_number = loan.loan_number and

branch_name = 'Perryridge'
order by customer_name

We may specify desc for descending order or asc for ascending
order, for each attribute; ascending order is the default.

Example: order by customer_name desc

©Silberschatz, Korth and Sudarshan3.19Database System Concepts, 5th Ed., June 2006

DuplicatesDuplicates

In relations with duplicates, SQL can define how many copies of
tuples appear in the result.
Multiset versions of some of the relational algebra operators – givenMultiset versions of some of the relational algebra operators given
multiset relations r1 and r2:

1. σθ (r1): If there are c1 copies of tuple t1 in r1, and t1 satisfies
selections σθ,, then there are c1 copies of t1 in σθ (r1).

2. ΠA (r): For each copy of tuple t1 in r1, there is a copy of tuple
ΠA (t1) in ΠA (r1) where ΠA (t1) denotes the projection of the single
t l ttuple t1.

3. r1 x r2 : If there are c1 copies of tuple t1 in r1 and c2 copies of tuple
t2 in r2, there are c1 x c2 copies of the tuple t1. t2 in r1 x r2

©Silberschatz, Korth and Sudarshan3.20Database System Concepts, 5th Ed., June 2006

Duplicates (Cont.)Duplicates (Cont.)

Example: Suppose multiset relations r1 (A, B) and r2 (C) are as
follows:

r = {(1 a) (2 a)} r = {(2) (3) (3)}r1 = {(1, a) (2,a)} r2 = {(2), (3), (3)}
Then ΠB(r1) would be {(a), (a)}, while ΠB(r1) x r2 would be

{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}
SQL duplicate semantics:

select A1,, A2, ..., An
from r1, r2, ..., rm
where P

is equivalent to the multiset version of the expression:

))((21,,, 21 mPAAA rrr
n

×××∏ KK σ

©Silberschatz, Korth and Sudarshan3.21Database System Concepts, 5th Ed., June 2006

Set OperationsSet Operations

The set operations union, intersect, and except operate on relations
and correspond to the relational algebra operations ∪, ∩, −.

Each of the above operations automatically eliminates duplicates; toEach of the above operations automatically eliminates duplicates; to
retain all duplicates use the corresponding multiset versions union all,
intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it occurs:
m + n times in r union all s
min(m,n) times in r intersect all s
max(0, m – n) times in r except all s

©Silberschatz, Korth and Sudarshan3.22Database System Concepts, 5th Ed., June 2006

Set OperationsSet Operations

Find all customers who have a loan, an account, or both:

(select customer_name from depositor)
iunion

(select customer_name from borrower)

Find all customers who have both a loan and an account.

(select customer_name from depositor)
intersect
(select customer name from borrower)

Find all customers who have both a loan and an account.

(select customer name from depositor)

(select customer_name from borrower)

Find all customers who have an account but no loan.

(select customer_name from depositor)
except
(select customer_name from borrower)

©Silberschatz, Korth and Sudarshan3.23Database System Concepts, 5th Ed., June 2006

Aggregate FunctionsAggregate Functions

These functions operate on the multiset of values of a column of
a relation, and return a value

avg: average valueavg: average value
min: minimum value
max: maximum value
sum: sum of values

fcount: number of values

©Silberschatz, Korth and Sudarshan3.24Database System Concepts, 5th Ed., June 2006

Aggregate Functions (Cont.)Aggregate Functions (Cont.)

Find the average account balance at the Perryridge branch.

select avg (balance)

Fi d th b f t l i th t l ti

g ()
from account
where branch_name = 'Perryridge'

Find the number of tuples in the customer relation.

select count (*)
from customer

Find the number of depositors in the bank.

select count (distinct customer name)select count (distinct customer_name)
from depositor

©Silberschatz, Korth and Sudarshan3.25Database System Concepts, 5th Ed., June 2006

Aggregate Functions Aggregate Functions –– Group ByGroup By

Find the number of depositors for each branch.

select branch name count (distinct customer name)select branch_name, count (distinct customer_name)
from depositor, account
where depositor.account_number = account.account_number
group by branch_name

Note: Attributes in select clause outside of aggregate functions must
i b li tappear in group by list

©Silberschatz, Korth and Sudarshan3.26Database System Concepts, 5th Ed., June 2006

Aggregate Functions Aggregate Functions –– Having ClauseHaving Clause

Find the names of all branches where the average account balance is
more than $1,200.

select branch_name, avg (balance)
from account
group by branch name

Note: predicates in the having clause are applied after the

g p y _
having avg (balance) > 1200

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where
clause are applied before forming groups

©Silberschatz, Korth and Sudarshan3.27Database System Concepts, 5th Ed., June 2006

Nested SubqueriesNested Subqueries

SQL provides a mechanism for the nesting of subqueries.
A subquery is a select-from-where expression that is nested within
another queryanother query.
A common use of subqueries is to perform tests for set membership, set
comparisons, and set cardinality.

©Silberschatz, Korth and Sudarshan3.28Database System Concepts, 5th Ed., June 2006

“In” Construct“In” Construct

Find all customers who have both an account and a loan at the bank.

select distinct customer_name
from borrower
where customer_name in (select customer_name

from depositor)

Find all customers who have a loan at the bank but do not have

from depositor)

an account at the bank

select distinct customer_name
ffrom borrower
where customer_name not in (select customer_name

from depositor)

©Silberschatz, Korth and Sudarshan3.29Database System Concepts, 5th Ed., June 2006

Example QueryExample Query

Find all customers who have both an account and a loan at the
Perryridge branch

select distinct customer_name
from borrower, loan
where borrower.loan_number = loan.loan_number and
branch_name = 'Perryridge' and
(branch_name, customer_name) in

(select branch_name, customer_name
from depositor accountfrom depositor, account
where depositor.account_number =

account.account_number)

Note: Above query can be written in a much simpler manner. The
formulation above is simply to illustrate SQL features.

©Silberschatz, Korth and Sudarshan3.30Database System Concepts, 5th Ed., June 2006

“Some” Construct“Some” Construct

Find all branches that have greater assets than some branch located
in Brooklyn.

select distinct T.branch_name
from branch as T, branch as S
where T.assets > S.assets and

S branch city = 'Brooklyn'

Same query using > some clause

S.branch_city = Brooklyn

select branch_name
from branch
where assets > some

((select assets
from branch
where branch_city = 'Brooklyn')

©Silberschatz, Korth and Sudarshan3.31Database System Concepts, 5th Ed., June 2006

“All” Construct“All” Construct

Find the names of all branches that have greater assets than all
branches located in Brooklyn.

select branch_name
from branch
where assets > all

(select assets
from branch
where branch_city = 'Brooklyn')

©Silberschatz, Korth and Sudarshan3.32Database System Concepts, 5th Ed., June 2006

“Exists” Construct“Exists” Construct

Find all customers who have an account at all branches located in
Brooklyn.

select distinct S.customer_name
from depositor as S
where not exists (

(select branch name(select branch_name
from branch
where branch_city = 'Brooklyn')
except
(select R.branch_name
from depositor as T, account as R
where T.account_number = R.account_number and

S customer name = T customer name))S.customer_name = T.customer_name))

Note that X – Y = Ø ⇔ X ⊆ Y
Note: Cannot write this query using = all and its variants

©Silberschatz, Korth and Sudarshan3.33Database System Concepts, 5th Ed., June 2006

q y g

Absence of Duplicate TuplesAbsence of Duplicate Tuples

The unique construct tests whether a subquery has any duplicate
tuples in its result.
Find all customers who have at most one account at the PerryridgeFind all customers who have at most one account at the Perryridge
branch.

select T.customer_name
from depositor as Tp
where unique (

select R.customer_name
from account, depositor as R

h T t R t dwhere T.customer_name = R.customer_name and
R.account_number = account.account_number and
account.branch_name = 'Perryridge')

©Silberschatz, Korth and Sudarshan3.34Database System Concepts, 5th Ed., June 2006

Example QueryExample Query

Find all customers who have at least two accounts at the Perryridge
branch.

select distinct T.customer_name
from depositor as T
where not unique (

l t R tselect R.customer_name
from account, depositor as R
where T.customer_name = R.customer_name and

R.account number = account.account number andR.account_number account.account_number and
account.branch_name = 'Perryridge')

Variable from outer level is known as a correlation variable

©Silberschatz, Korth and Sudarshan3.35Database System Concepts, 5th Ed., June 2006

Modification of the Database Modification of the Database –– DeletionDeletion

Delete all account tuples at the Perryridge branch
delete from account
where branch name = 'Perryridge' where branch_name = Perryridge

Delete all accounts at every branch located in the city ‘Needham’.
delete from account
where branch_name in (select branch_name

from branch
where branch city = 'Needham')where branch_city Needham)

©Silberschatz, Korth and Sudarshan3.36Database System Concepts, 5th Ed., June 2006

Example QueryExample Query

Delete the record of all accounts with balances below the average at
the bank.

delete from account
where balance < (select avg (balance)

from account)from account)

Problem: as we delete tuples from deposit, the average balance
hchanges

Solution used in SQL:
1. First, compute avg balance and find all tuples to delete
2. Next, delete all tuples found above (without recomputing avg or

retesting the tuples)

©Silberschatz, Korth and Sudarshan3.37Database System Concepts, 5th Ed., June 2006

Modification of the Database Modification of the Database –– InsertionInsertion

Add a new tuple to account
insert into account

values ('A-9732' 'Perryridge' 1200)values (A-9732 , Perryridge , 1200)

or equivalently

insert into account (branch_name, balance, account_number)
values ('Perryridge', 1200, 'A-9732')

Add a new tuple to account with balance set to null
insert into account

values ('A-777','Perryridge', null)(, y g ,)

©Silberschatz, Korth and Sudarshan3.38Database System Concepts, 5th Ed., June 2006

Modification of the Database Modification of the Database –– InsertionInsertion

Provide as a gift for all loan customers of the Perryridge branch, a $200
savings account. Let the loan number serve as the account number for the
new savings accountg

insert into account
select loan_number, branch_name, 200
from loan
where branch_name = 'Perryridge'

insert into depositor
select customer_name, loan_number
from loan, borrowerfrom loan, borrower
where branch_name = 'Perryridge'

and loan.account_number = borrower.account_number
The select from where statement is evaluated fully before any of its y y
results are inserted into the relation

Motivation: insert into table1 select * from table1

©Silberschatz, Korth and Sudarshan3.39Database System Concepts, 5th Ed., June 2006

Modification of the Database Modification of the Database –– UpdatesUpdates

Increase all accounts with balances over $10,000 by 6%, all other
accounts receive 5%.

Write two update statements:Write two update statements:
update account
set balance = balance ∗ 1.06
where balance > 10000where balance 10000

update account
set balance = balance ∗ 1 05set balance balance ∗ 1.05
where balance ≤ 10000

The order is important
Can be done better using the case statement (next slide)Can be done better using the case statement (next slide)

©Silberschatz, Korth and Sudarshan3.40Database System Concepts, 5th Ed., June 2006

Case Statement for Conditional UpdatesCase Statement for Conditional Updates

Same query as before: Increase all accounts with balances over
$10,000 by 6%, all other accounts receive 5%.

update account
set balance = case

when balance <= 10000 then balance *1.05
*else balance * 1.06

end

©Silberschatz, Korth and Sudarshan3.41Database System Concepts, 5th Ed., June 2006

More FeaturesMore Features

Database System Concepts 5th EdDatabase System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Joined Relations**Joined Relations**

Join operations take two relations and return as a result another
relation.
These additional operations are typically used as subqueryThese additional operations are typically used as subquery
expressions in the from clause
Join condition – defines which tuples in the two relations match, and
what attributes are present in the result of the join.what attributes are present in the result of the join.
Join type – defines how tuples in each relation that do not match any
tuple in the other relation (based on the join condition) are treated.

©Silberschatz, Korth and Sudarshan3.43Database System Concepts, 5th Ed., June 2006

Joined Relations Joined Relations –– Datasets for ExamplesDatasets for Examples

Relation loan

Relation borrower

Note: borrower information missing for L-260 and loan
information missing for L-155

©Silberschatz, Korth and Sudarshan3.44Database System Concepts, 5th Ed., June 2006

Joined Relations Joined Relations –– Examples Examples

loan inner join borrower on
loan.loan_number = borrower.loan_number

loan left outer join borrower on
loan.loan_number = borrower.loan_number

©Silberschatz, Korth and Sudarshan3.45Database System Concepts, 5th Ed., June 2006

Joined Relations Joined Relations –– ExamplesExamples

loan natural inner join borrower

loan natural right outer join borrower

Find all customers who have either an account or a loan (but not both) at the bank.

select customer_name
from (depositor natural full outer join borrower)

©Silberschatz, Korth and Sudarshan3.46Database System Concepts, 5th Ed., June 2006

(p j)
where account_number is null or loan_number is null

Joined Relations Joined Relations –– ExamplesExamples

Natural join can get into trouble if two relations have an attribute with
same name that should not affect the join condition

e g an attribute such as remarks may be present in many tablese.g. an attribute such as remarks may be present in many tables
Solution:

loan full outer join borrower using (loan_number)

©Silberschatz, Korth and Sudarshan3.47Database System Concepts, 5th Ed., June 2006

Derived RelationsDerived Relations

SQL allows a subquery expression to be used in the from clause
Find the average account balance of those branches where the average
account balance is greater than $1200account balance is greater than $1200.

select branch_name, avg_balance
from (select branch_name, avg (balance)

from accountfrom account
group by branch_name)
as branch_avg (branch_name, avg_balance)

where avg_balance > 1200
Note that we do not need to use the having clause, since we compute
the temporary (view) relation branch_avg in the from clause, and the
attributes of branch_avg can be used directly in the where clause.

©Silberschatz, Korth and Sudarshan3.48Database System Concepts, 5th Ed., June 2006

View DefinitionView Definition

A relation that is not of the conceptual model but is made visible to
a user as a “virtual relation” is called a view.
A view is defined using the create view statement which has theA view is defined using the create view statement which has the
form

create view v as < query expression >

where <query expression> is any legal SQL expression. The view
name is represented by v.
Once a view is defined, the view name can be used to refer to the
virtual relation that the view generates.

©Silberschatz, Korth and Sudarshan3.49Database System Concepts, 5th Ed., June 2006

Example QueriesExample Queries

A view consisting of branches and their customers

create view all_customer as
(l t b h t(select branch_name, customer_name
from depositor, account
where depositor.account_number =

account.account number)account.account_number)
union
(select branch_name, customer_name
from borrower, loan

here borro er loan n mber loan loan n mber)

Find all customers of the Perryridge branch

where borrower.loan_number = loan.loan_number)

select customer nameselect customer_name
from all_customer
where branch_name = 'Perryridge'

©Silberschatz, Korth and Sudarshan3.50Database System Concepts, 5th Ed., June 2006

Uses of ViewsUses of Views

Hiding some information from some users
Consider a user who needs to know a customer’s name, loan number
and branch name but has no need to see the loan amountand branch name, but has no need to see the loan amount.
Define a view

(create view cust_loan_data as
select customer name, borrower.loan number, branch nameselect customer_name, borrower.loan_number, branch_name
from borrower, loan
where borrower.loan_number = loan.loan_number)

Grant the user permission to read cust_loan_data, but not borrower or
loanloan

Predefined queries to make writing of other queries easier
Common example: Aggregate queries used for statistical analysis of
d tdata

©Silberschatz, Korth and Sudarshan3.51Database System Concepts, 5th Ed., June 2006

Update of a ViewUpdate of a View

Create a view of all loan data in the loan relation, hiding the amount
attribute

create view loan branch ascreate view loan_branch as
select loan_number, branch_name
from loan

Add a new tuple to loan branchAdd a new tuple to loan_branch
insert into loan_branch

values ('L-37‘, 'Perryridge‘)
This insertion must be represented by the insertion of the tupleThis insertion must be represented by the insertion of the tuple

('L-37', 'Perryridge', null)
into the loan relation

©Silberschatz, Korth and Sudarshan3.52Database System Concepts, 5th Ed., June 2006

Updates Through Views (Cont.)Updates Through Views (Cont.)

Some updates through views are impossible to translate into
updates on the database relations

create view v ascreate view v as
select loan_number, branch_name, amount
from loan
where branch_name = ‘Perryridge’

insert into v values ('L-99','Downtown', '23')

Others cannot be translated uniquelyOthers cannot be translated uniquely
insert into all_customer values ('Perryridge', 'John')

Have to choose loan or account, and
create a new loan/account number!create a new loan/account number!

Most SQL implementations allow updates only on simple views
(without aggregates) defined on a single relation

©Silberschatz, Korth and Sudarshan3.53Database System Concepts, 5th Ed., June 2006

Null ValuesNull Values

It is possible for tuples to have a null value, denoted by null, for some
of their attributes
null signifies an unknown value or that a value does not existnull signifies an unknown value or that a value does not exist.
The predicate is null can be used to check for null values.

Example: Find all loan number which appear in the loan relation
with null values for amountwith null values for amount.

select loan_number
from loan
where amount is nullwhere amount is null

The result of any arithmetic expression involving null is null
Example: 5 + null returns null

However, aggregate functions simply ignore nulls
More on next slide

©Silberschatz, Korth and Sudarshan3.54Database System Concepts, 5th Ed., June 2006

Null Values and Three Valued LogicNull Values and Three Valued Logic

Any comparison with null returns unknown
Example: 5 < null or null <> null or null = null

Th l d l i i th t th l kThree-valued logic using the truth value unknown:
OR: (unknown or true) = true,

(unknown or false) = unknown
(unknown or unknown) = unknown(unknown or unknown) = unknown

AND: (true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown(unknown and unknown) unknown

NOT: (not unknown) = unknown
“P is unknown” evaluates to true if predicate P evaluates to
unknownunknown

Result of where clause predicate is treated as false if it evaluates to
unknown

©Silberschatz, Korth and Sudarshan3.55Database System Concepts, 5th Ed., June 2006

Null Values and AggregatesNull Values and Aggregates

Total all loan amounts
select sum (amount)
from loanfrom loan

Above statement ignores null amounts
Result is null if there is no non-null amount

All aggregate operations except count(*) ignore tuples with null
values on the aggregated attributes.

©Silberschatz, Korth and Sudarshan3.56Database System Concepts, 5th Ed., June 2006

Data DictionaryData Dictionary
One of the most important parts of an Oracle database is its data dictionary,

which is a read-only set of tables that provides information about the database. A

d t di ti t idata dictionary contains:
The definitions of all schema objects in the database (tables, views, indexes,

clusters, synonyms, sequences, procedures, functions, packages, triggers,
and so on)

How much space has been allocated for, and is currently used by, the
schema objects

Default values for columns
Integrity constraint information
The names of Oracle users
Privileges and roles each user has been granted
Auditing information, such as who has accessed or updated various

schema objects

©Silberschatz, Korth and Sudarshan3.57Database System Concepts, 5th Ed., June 2006

schema objects
Other general database information

