
Practical-4

Objective: Thread creation and Termination (pthread_create and 
pthread_join)

What is a Thread?
A thread can be loosely defined as a separate stream of execution that takes place 

simultaneously with and independently of everything else that might be happening. A 
thread is like a classic program that starts at point A and executes until it reaches point B. 
It does not have an event loop. 

A thread runs independently of anything else happening in the computer. Without 
threads an entire program can be held up by one CPU intensive task or one infinite loop, 
intentional or otherwise. With threads the other tasks that don't get stuck in the loop can 
continue processing without waiting for the stuck task to finish. 

It turns out that implementing threading is harder than implementing multitasking 
in an operating system. The reason it's relatively easy to implement multitasking is that 
individual programs are isolated from each other. Individual threads, however, are not. 

Threads vs. Processes
Both  threads  and  processes  are  methods  of  parallelizing  an  application. 

However, processes are independent execution units that contain their own state 
information,  use their own address spaces, and only interact  with each other via 
interprocess  communication  mechanisms  (generally  managed  by  the  operating 
system). 

Applications are typically divided into processes during the design phase, 
and  a  master  process  explicitly  spawns  sub-processes  when  it  makes  sense  to 
logically separate significant application functionality. Processes, in other words, 
are an architectural construct. 

By contrast, a thread is a coding construct that doesn't affect the architecture 
of  an application.  A single  process  might  contains  multiple  threads;  all  threads 
within  a  process  share  the  same  state  and  same  memory  space,  and  can 
communicate with each other directly, because they share the same variables. 

Threads  typically  are  spawned  for  a  short-term  benefit  that  is  usually 
visualized  as  a  serial  task,  but  which  doesn't  have  to  be  performed in  a  linear 
manner  (such  as  performing  a  complex  mathematical  computation  using 
parallelism, or initializing a large matrix), and then are absorbed when no longer 
required. 

Thread  operations  include  thread  creation,  termination,  synchronization 
(joins,blocking), scheduling, data management and process interaction.



A thread does not maintain a list of created threads, nor does it know the thread 
that created it. 

All threads within a process share the same address space. 
Threads in the same process share: 

o Process instructions 
o Most data 
o open files (descriptors) 
o signals and signal handlers 
o current working directory 
o User and group id 

Each thread has a unique: 
o Thread ID 
o set of registers, stack pointer 
o stack for local variables, return addresses 
o signal mask 
o priority 
o Return value: errno 



PROGRAM 4.1

AIM: Write a simple program that will create two threads, main thread should wait 
for both the thread to complete.

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void *print_message_function( void *ptr );

main()
{
     pthread_t thread1, thread2;
     char *message1 = "I am Thread 1";
     char *message2 = "I am Thread 2";
     int  iret1, iret2;

    /* Create independent threads each of which will execute function */

iret1 = pthread_create( &thread1, NULL, print_message_function, 
(void*) message1);
     iret2 = pthread_create( &thread2, NULL, print_message_function, 
(void*) message2);

     pthread_join( thread1, NULL);
     pthread_join( thread2, NULL); 

     printf("Thread 1 returns: %d\n",iret1);
     printf("Thread 2 returns: %d\n",iret2);
     exit(0);
}

void *print_message_function( void *ptr )
{
     char *message;
     message = (char *) ptr;
     printf("%s \n", message);
}

Compile: 

gcc pthread1.c -o pthread1 -lpthread 



OUT PUT 3.2

I am Thread 1
I am Thread 2
Thread 1 returns: 0
Thread 2 returns: 0



EXERCISES – 4

4.1) Write a program to multiply two matrices using threads. Let say first 
matrix M1 of dimensions A X B and second matrix M2 of dimension B X C. 
Identify the number of threads required for multiplication.


	What is a Thread?
	Threads vs. Processes

